
SimMechanics™ 3
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

SimMechanics™ User’s Guide

© COPYRIGHT 2001–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
December 2001 Online only Version 1.0 (Release 12.1+)
July 2002 First printing Revised for Version 1.1 (Release 13)
November 2002 Online only Revised for Version 2.0 (Release 13+)
June 2004 Second printing Revised for Version 2.2 (Release 14)
October 2004 Online only Revised for Version 2.2.1 (Release 14SP1)
March 2005 Online only Revised for Version 2.2.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.3 (Release 14SP3)
March 2006 Online only Revised for Version 2.4 (Release 2006a)
September 2006 Third printing Revised for Version 2.5 (Release 2006b)
March 2007 Online only Revised for Version 2.6 (Release 2007a)
September 2007 Online only Revised for Version 2.7 (Release 2007b)
March 2008 Online only Revised for Version 2.7.1 (Release 2008a)
October 2008 Online only Revised for Version 3.0 (Release 2008b)
March 2009 Online only Revised for Version 3.1 (Release 2009a)
September 2009 Online only Revised for Version 3.1.1 (Release 2009b)
March 2010 Online only Revised for Version 3.2 (Release 2010a)

Contents

Modeling Mechanical Systems

1
Representing Machines with Models 1-2
About Machines . 1-2
About SimMechanics Models . 1-2
Creating a SimMechanics Model . 1-3
Connecting SimMechanics Blocks . 1-5
Interfacing SimMechanics Blocks to Simulink Blocks 1-6
Creating SimMechanics Subsystems 1-6
Creating Custom SimMechanics Blocks with Masks 1-8

Modeling Grounds and Bodies . 1-9
About Bodies and Grounds . 1-9
Modeling Grounds . 1-9
Modeling Rigid Bodies . 1-11
Working with Body Coordinate Systems 1-14

Modeling Degrees of Freedom . 1-19
About Joints . 1-19
Modeling Joints . 1-20
Creating a Joint . 1-27
Modeling Massless Connectors . 1-30
Modeling Disassembled Joints . 1-34

Constraining and Driving Degrees of Freedom 1-38
About Constraints . 1-38
Types of Mechanical Constraints . 1-38
What Constraints and Drivers Do . 1-39
Directionality of Constraints and Drivers 1-40
Solving Constraints . 1-40
Restrictions on Using Constraint and Driver Blocks 1-41
Constraint Example: Gear Constraint 1-41
Driver Example: Angle Driver . 1-43

Cutting Machine Diagram Loops . 1-46
Rules for Valid Machine Diagram Loops 1-46

v

Rules for Automatic Loop Cutting . 1-46
Specifying a Loop Joint for Cutting 1-47
Displaying the Cut Joints . 1-47
For More About Disassembled and Cut Joints 1-47
For More About Constraints and Drivers 1-47

Applying Motions and Forces . 1-48
About Actuators . 1-48
Actuating a Body . 1-50
Varying a Body’s Mass and Inertia Tensor 1-53
Actuating a Joint . 1-56
Actuating a Driver . 1-62
Specifying Initial Positions and Velocities 1-62

Sensing Motions and Forces . 1-68
About Sensors . 1-68
Sensing Body Motions . 1-69
Sensing Joint Motions and Forces . 1-70
Sensing Constraint Reaction Forces 1-71

Adding Internal Forces . 1-74
About Force Elements . 1-74
Inserting a Linear Force Between Bodies 1-74
Inserting a Linear Force or Torque Through a Joint 1-76
Customizing Force Elements with Sensor-Actuator
Feedback . 1-78

Combining One- and Three-Dimensional Mechanical
Elements . 1-79
About Interface Elements . 1-79
Working with Interface Elements . 1-81
Example: Rotational Spring-Damper with Hard Stop 1-82

Validating Mechanical Models . 1-85
Essential Tests for Model Validity . 1-85
Verifying Model Topology . 1-85
Counting Model Degrees of Freedom 1-89

vi Contents

Running Mechanical Models

2
Configuring SimMechanics Models in Simulink 2-2
SimMechanics and Simulink Options 2-2
Distinguishing Models and Machines 2-2
Machine Settings via the Machine Environment Block . . . 2-2
Model-Wide Settings via Simulink and Simscape
Software . 2-3

Configuring Methods of Solution . 2-6
About Mechanical and Mathematical Settings 2-6
Defining Gravity . 2-6
Choosing Your Machine’s Dimensionality 2-7
Choosing an Analysis Mode . 2-8
Hierarchy of Solvers and Tolerances 2-11
Controlling Machine Assembly . 2-12
Maintaining Constraints . 2-12
Configuring a Simulink Solver . 2-16
Avoiding Simulation Failures . 2-17

Starting Visualization and Simulation 2-20
About Simscape and Visualization Settings 2-20
Using the Simscape Editing Mode . 2-20
Setting Up Visualization . 2-22
Starting the Simulation . 2-23

How SimMechanics Software Works 2-24
About Machine Simulation . 2-24
Model Validation . 2-24
Machine Initialization . 2-24
Force Analysis and Motion Integration 2-25
Stiction Mode Iteration . 2-25

Troubleshooting Simulation Errors 2-26
About Simulation Errors . 2-26
Data Validation Errors . 2-26
Ground and Body Geometry Errors 2-27
Joint Geometry Errors . 2-27
Block Connection and Topology Errors 2-28
Motion Inconsistency and Singularity Errors 2-28

vii

Analysis Mode Errors . 2-31

Improving Performance . 2-32
Optimizing Mechanical and Mathematical Settings 2-32
Simplifying the Degrees of Freedom 2-32
Adjusting Constraint Tolerances . 2-34
Smoothing Motion Singularities . 2-34
Changing the Simulink Solver and Tolerances 2-35
Adjusting the Time Step in Real-Time Simulation 2-36

Generating Code . 2-38
About Code Generation from SimMechanics Models 2-38
Using Code-Related Products and Features 2-38
How SimMechanics Code Generation Differs from
Simulink . 2-39

Using Run-Time Parameters in Generated Code 2-40

Limitations . 2-42
About SimMechanics and Simulink Limitations 2-42
Continuous Sample Times Required 2-42
Restricted Simulink Tools . 2-42
Unsupported Simulink Tool . 2-43
Simulink Tools Not Compatible with SimMechanics
Blocks . 2-43

Restrictions on Two-Dimensional Simulation 2-44
Restrictions with Generated Code . 2-44

Analyzing Motion

3
Dynamics of Mechanical Systems 3-2
About Machine Dynamics . 3-2
Forward and Inverse Dynamics . 3-3
Forces, Torques, and Accelerations 3-4

Finding Forces from Motions . 3-7
About Inverse Dynamics in SimMechanics Software 3-7
Inverse Dynamics Mode with a Double Pendulum 3-8
Kinematics Mode with a Four Bar Machine 3-14

viii Contents

Trimming Mechanical Models . 3-18
About Trimming in SimMechanics Software 3-18
Unconstrained Trimming of a Spring-Loaded Double
Pendulum . 3-20

Constrained Trimming of a Four Bar Machine 3-26

Linearizing Mechanical Models . 3-32
About Linearization and SimMechanics Software 3-32
Open-Topology Linearization: Double Pendulum 3-34
Closed-Loop Linearization: Four Bar Machine 3-40

Motion, Control, and Real-Time Simulation

4
Guide to This Chapter . 4-3
About the Stewart Platform and How It Is Modeled 4-3
About the Case Studies . 4-3
Products Needed for the Case Studies 4-4
References . 4-5

About the Stewart Platform . 4-7
Origin and Uses of the Stewart Platform 4-7
Characteristics of the Stewart Platform 4-7
Counting Degrees of Freedom in the Stewart Platform . . . 4-8

Modeling the Stewart Platform . 4-13
How the Stewart Platform Is Modeled 4-13
Modeling the Physical Plant . 4-13
Modeling Controllers . 4-15
Initializing the Stewart Platform . 4-18
Identifying the Simulink and Mechanical States of the
Stewart Platform . 4-21

Visualizing the Stewart Platform Motion 4-23

Trimming and Linearizing Through Inverse
Dynamics . 4-24
About Trimming and Inverse Dynamics 4-24
What Is Trimming? . 4-24
Ways to Find an Operating Point . 4-25

ix

Trimming in the Kinematics Mode 4-25
Linearizing the Stewart Platform at an Operating Point . . 4-29
Further Suggestions for Inverse Dynamics Trimming 4-32

About Controllers and Plants . 4-35
Modeling Controllers in Simulink and Plants in
SimMechanics Software . 4-35

Nature of the Control Problem . 4-36
Control Transfer Function Forms and Units 4-37
Controller-Plant Case Study Files . 4-37
For More About Designing Controllers 4-37

Analyzing Controllers . 4-39
Implementing a Simple Controller for the Stewart
Platform . 4-39

A First Look at the Stewart Platform Control Model 4-39
Improper and Biproper PID Controllers 4-42
Analyzing the PID Controller Response 4-46

Designing and Improving Controllers 4-50
Creating Improved Controllers for the Stewart Platform . . 4-50
Designing a New PID Controller . 4-51
Trimming and Linearizing the Platform Motion 4-53
Improving the New PID Controller 4-59
Synthesizing a Robust, Multichannel Controller 4-66

Generating and Simulating with Code 4-71
About the Stewart Platform Code Generation Examples . . 4-71
For More Information About Code Generation 4-71
Learning About the Model . 4-72
Generating an S-Function Block for the Plant 4-76
Model Referencing the Plant . 4-77
Generating Stand-Alone Code for the Whole Model 4-80

Simulating with Hardware in the Loop 4-82
About Dedicated Hardware Targets for Stewart Platform
Simulation . 4-82

For More Information About xPC Target Software 4-83
Files Needed for This Study . 4-83
Adjusting Hardware for Computational Demands 4-83
Downloading a Complete Model to the Target 4-85
Configuring for Realistic Hardware 4-90

x Contents

Index

xi

xii Contents

1

Modeling Mechanical
Systems

SimMechanics™ software gives you a complete set of block libraries for
modeling machine parts and connecting them into a Simulink® block diagram.

• “Representing Machines with Models” on page 1-2

• “Modeling Grounds and Bodies” on page 1-9

• “Modeling Degrees of Freedom” on page 1-19

• “Constraining and Driving Degrees of Freedom” on page 1-38

• “Cutting Machine Diagram Loops” on page 1-46

• “Applying Motions and Forces” on page 1-48

• “Sensing Motions and Forces” on page 1-68

• “Adding Internal Forces” on page 1-74

• “Combining One- and Three-Dimensional Mechanical Elements” on page
1-79

• “Validating Mechanical Models” on page 1-85

Consult “Representing Motion” to review body kinematics. If you need more
information on rigid body mechanics, consult the physics and engineering
literature, beginning with the “Bibliography”. Classic engineering mechanics
texts include Goodman and Warner [2], [3] and Meriam [8]. The books of
Goldstein [1] and José and Saletan [5] are more theoretically oriented.

1 Modeling Mechanical Systems

Representing Machines with Models

In this section...

“About Machines” on page 1-2

“About SimMechanics Models” on page 1-2

“Creating a SimMechanics Model” on page 1-3

“Connecting SimMechanics Blocks” on page 1-5

“Interfacing SimMechanics Blocks to Simulink Blocks” on page 1-6

“Creating SimMechanics Subsystems” on page 1-6

“Creating Custom SimMechanics Blocks with Masks” on page 1-8

About Machines
The SimMechanics term machine has two meanings.

• It refers to a physical system that includes at least one rigid body. The
SimMechanics block library allows you to create Simulink models of
machines.

• It also refers to a topologically distinct and separate block diagram
representing one physical machine. A model can have one or more
machines.

This section explains the nature of machines and SimMechanics models.

About SimMechanics Models
A SimMechanics model consists of a block diagram composed of one or more
machines, each of which is a set of connected blocks representing a single
physical machine. For example, the following model contains two machines.

1-2

Representing Machines with Models

Comparison to Other Simulink Models
A SimMechanics model differs significantly from other Simulink models in
how it represents a machine.

• An ordinary Simulink model represents the mathematics of a machine’s
motion, i.e., the algebraic and differential equations that predict the
machine’s future state from its present state. The mathematical model
enables Simulink to simulate the machine.

• A SimMechanics model represents the physical structure of a machine,
the mass properties and geometric and kinematic relationships of its
component bodies. SimMechanics software converts this structural
representation to an internal, equivalent mathematical model. This saves
you the time and effort of developing the mathematical model yourself.

Creating a SimMechanics Model
You create a SimMechanics model in much the same way you create any
other Simulink model. First, you open a Simulink model window. Then you

1-3

1 Modeling Mechanical Systems

drag instances of SimMechanics and other Simulink blocks from the Simulink
block libraries into the window and draw lines to interconnect the blocks (see
“Connecting SimMechanics Blocks” on page 1-5).

The SimMechanics block library provides the following blocks specifically
for modeling machines:

• Machine Environment blocks set the mechanical environment for a
machine. Exactly one Ground block in each machine must be connected to a
Machine Environment block. See Chapter 2, “Running Mechanical Models”.

• Body blocks represent a machine’s components and the machine’s immobile
surroundings (ground). See “Modeling Grounds and Bodies” on page 1-9.

• Joint blocks represent the degrees of freedom of one body relative to
another body or to a point on ground. See “Modeling Degrees of Freedom”
on page 1-19.

• Constraint and Driver blocks restrict motions of or impose motions on
bodies relative to one another. See “Constraining and Driving Degrees
of Freedom” on page 1-38.

• Actuator blocks specify forces, motions, variable masses and inertias, or
initial conditions applied to bodies, joints, and drivers. See “Applying
Motions and Forces” on page 1-48.

• Sensor blocks measure the forces on and motions of bodies, joints, and
drivers. See “Sensing Motions and Forces” on page 1-68.

• Force element blocks model interbody forces. See “Sensing Motions and
Forces” on page 1-68.

• Simscape™ mechanical elements model one-dimensional motion and, with
certain restrictions, can be interfaced with SimMechanics machines. See
“Combining One- and Three-Dimensional Mechanical Elements” on page
1-79.

You can use blocks from other Simulink libraries in SimMechanics models.
For example, you can connect the output of SimMechanics Sensor blocks
to Scope blocks from the Simulink Sinks library to display the forces and
motions of your model’s bodies and joints. Similarly, you can connect blocks
from the Simulink Sources library to SimMechanics Driver blocks to specify
relative motions of your machine’s bodies.

1-4

Representing Machines with Models

Connecting SimMechanics Blocks
In general, you connect SimMechanics blocks in the same way you connect
other Simulink blocks: by drawing lines between them. Significant differences
exist, however, between connecting standard Simulink blocks and connecting
SimMechanics blocks. This section discusses these differences.

Connection Lines
The lines that you draw between standard Simulink blocks, called signal
lines, represent inputs to and outputs from the mathematical functions
represented by the blocks. By contrast, the lines that you draw between
SimMechanics blocks, called connection lines, represent physical connections
and spatial relationships among the bodies represented by the blocks.

You can draw connection lines only between specialized connector ports
available only on SimMechanics blocks (see next section) and you cannot
branch existing connection lines. Connection lines appear as solid black when
connected and as dashed red lines when either end is unconnected.

Connector Ports
Standard Simulink blocks have input and output ports. By contrast, most
SimMechanics blocks contain only specialized connector ports that permit
you to draw connection lines among SimMechanics blocks. SimMechanics
connector ports are of two types: Body CS ports and general-purpose ports.

Body CS ports appear on Body and Ground blocks and define connection points
on a body or ground. Each is associated with a local coordinate system whose
origin specifies the location of the associated connection point on the body.

General-purpose connector ports appear on Joint, Constraint, Driver, Sensor,
and Actuator blocks. They permit you to connect Joints to Bodies and connect
Sensors and Actuators to Joints, Constraints, and Drivers. General-purpose

1-5

1 Modeling Mechanical Systems

connector ports appear as circles on the block icon. The circle is unfilled if the
port is unconnected and filled if the port is connected.

Interfacing SimMechanics Blocks to Simulink Blocks
SimMechanics Actuator blocks (see “Applying Motions and Forces” on page
1-48) contain standard Simulink input ports. Thus, you can connect standard
Simulink blocks to a SimMechanics model via Actuator blocks. Similarly,
SimMechanics Sensor blocks contain output ports (see “Sensing Motions
and Forces” on page 1-68). Thus, you can connect a SimMechanics model to
Simulink blocks via Sensor blocks.

Creating SimMechanics Subsystems
Large, complex block diagram models are often hard to analyze. Enclosing
functionally related groups of blocks in subsystems alleviates this difficulty
and facilitates reuse of block groups in different models.

You can create subsystems containing SimMechanics blocks that you can
connect to other SimMechanics blocks. You do this in two ways:

1-6

Representing Machines with Models

• Automatically

• Manually

The Simulink documentation explains more about creating subsystems.

Creating a Subsystem Automatically
To create a SimMechanics subsystem automatically,

1 Create the subsystem block diagram in your model window, leaving
unconnected ports for external connections.

2 Group-select the subsystem block diagram.

3 Select Create subsystem from the Edit menu of the Simulink model
window.

The last step replaces the block diagram with a Subsystem block containing
the selected block diagram. It also creates and connects SimMechanics
Connection Port blocks for the ports that you left unconnected in the block
diagram. The Connection Port blocks in turn create connector port icons on
the subsystem icon, enabling you to connect external SimMechanics blocks
to the new subsystem.

1-7

1 Modeling Mechanical Systems

Creating a Subsystem Manually
Sometimes you need to make a subsystem configured differently from an
automatically created one. To create a SimMechanics subsystem manually,

1 Drag a Subsystem block into your model window.

2 Open the Subsystem block.

3 Create the subsystem block diagram in the subsystem window.

4 Drag a Connection Port block from the SimMechanics Utilities library
into the subsystem window for each port that you want to be available
externally.

5 Connect the external connector ports to the Connection Port blocks.

Creating Custom SimMechanics Blocks with Masks
You can create your own SimMechanics blocks from subsystems, for example,
a spring-loaded Joint block or a sphere Body block. To do this, create a block
diagram that implements the functionality of your custom block, enclose the
diagram as a subsystem, and add a mask (i.e., a graphical user interface)
to the subsystem. To facilitate sharing your custom blocks across models
or with other users, create a Simulink block library and add these masked
subsystem blocks to the library. The Simulink documentation explains how
to create custom blocks with masks.

1-8

Modeling Grounds and Bodies

Modeling Grounds and Bodies

In this section...

“About Bodies and Grounds” on page 1-9

“Modeling Grounds” on page 1-9

“Modeling Rigid Bodies” on page 1-11

“Working with Body Coordinate Systems” on page 1-14

About Bodies and Grounds
The basic components of any mechanism are its constituent rigid bodies. A
SimMechanics body refers to any point or spatially extended object that has
mass. SimMechanics bodies, unlike physical bodies, do not have degrees
of freedom. The SimMechanics Bodies library contains two blocks for
representing bodies in a Simulink model:

• Ground

Models a point on an ideal body of infinite mass and extent that serves as a
fixed reference point for machines (see “Modeling Grounds” on page 1-9).

• Body

Models rigid bodies of finite mass and extent, including their attached
body coordinate systems (see “Modeling Rigid Bodies” on page 1-11 and
“Working with Body Coordinate Systems” on page 1-14).

“Representing Motion” explains, with detailed examples, more about
configuring bodies and their coordinate systems in space.

Modeling Grounds
A SimMechanics ground refers to a body of infinite mass that acts both
as a reference frame at rest for a whole machine and as a fixed base for
attaching machine components, e.g., the factory floor on which a robot stands.
SimMechanics Ground blocks enable you to represent points on ground in your
machine. This in turn enables you to specify the degrees of freedom that your
system has relative to its surroundings. You do this by connecting Joint blocks

1-9

1 Modeling Mechanical Systems

representing the degrees of freedom between the Body blocks representing
parts of your machine and the Ground blocks representing ground points.

Each Ground block has a single connector port to which you can connect a
Joint block that can in turn be connected to a single Body block. Each Ground
block therefore allows you to represent the degrees of freedom between a
single part of your machine and its surroundings. If you want to specify the
motion of other parts of your machine relative to the surroundings, you must
create additional Ground blocks.

Caution Each machine in a SimMechanics model must contain at least one
Ground block connected to a Body block via a Joint block. Each submachine
connected by a Shared Environment block must have at least one Ground.

Machine Environment Required for Each Machine
One Ground block in each machine of your model plays a second role,
connection to that machine’s Machine Environment block, which sets its
mechanical environment. See Chapter 2, “Running Mechanical Models”.

Caution Exactly one Ground block in each machine in your model must be
connected to a Machine Environment block.

World and Grounded Coordinate Systems
The SimMechanics master coordinate system and reference frame is called
World. All grounds are at rest in World. The connector port of each Ground
block defines a grounded coordinate system called GND. The GND coordinate
system’s axes are parallel to World.

1-10

Modeling Grounds and Bodies

By default the origin of the grounded coordinate system coincides with the
origin of the World coordinate system. The Location field of a Ground block’s
dialog allows you to move the origin of GND to some other point in the World
coordinate system, as in the example “Modeling and Simulating a Simple
Machine”.

The GND coordinate system allows you to specify the positions and motions of
parts of your machine relative to fixed points in the machine’s surroundings.
With a shifted origin, GND remains at rest.

Modeling Rigid Bodies
The SimMechanics Body block enables you to model rigid bodies of finite
mass and extent. A body is rigid if its internal parts cannot move relative to
one another.

About Body Blocks
A Body block allows you to specify the following attributes of a rigid body.

Mass Properties. These include the body’s mass, which determines its
response to translational forces, and its inertia tensor, which determines its
response to rotational torques.

1-11

1 Modeling Mechanical Systems

Body Coordinate Systems. By default a Body block defines three local
coordinate systems, one associated with a body’s center of gravity, labeled
CG, and two others, labeled CS1 and CS2, respectively, associated with two
other points on the body that you can specify. You can create additional Body
coordinate systems or delete them as necessary.

A Body block’s dialog box allows you to specify a Body CS’s origin (see “Setting
a Body CS’s Position” on page 1-14) and orientation (see “Setting a Body CS’s
Orientation” on page 1-16). The origin and orientation of a body’s CG CS
specify the body’s starting location and orientation. The origins of the other
Body coordinate systems specify the initial locations of other points on the
body.

The Body block allows flexibility in specifying the origins and orientations
of Body coordinate systems. You can specify the origin and orientation of
a body CS relative to

• The World CS

• Any other CS on the same body

• The Adjoining CS, the CS on the neighboring body or ground directly
connected by a Joint, Constraint, or Driver to the selected Body CS you
are configuring

This simplifies creation and maintenance of models. The only limitation is
that you must specify the origin and location of at least one of a machine’s
Body coordinate systems relative to the World CS.

Home Configuration. Once you enter all the needed positions and
orientations into the Bodies of your model, your machine is in its home
configuration. The body velocities are zero, and any disassembled joints
remain disassembled.

Connector Ports. Any Body CS can display a Body CS Port. A Body CS Port
allows you to attach Joints, Actuators, and Sensors to a Body. By default, a
Body’s CS1 and CS2 coordinate systems each display a Body CS port. You
can display a port for any other Body coordinate system as well, including
a Body’s CG CS.

1-12

Modeling Grounds and Bodies

Creating a Body Block
To create a Body block,

1 Drag a Body block icon from the SimMechanics Bodies Library and drop
it into your model window.

2 Open the Body block’s dialog box.

3 Enter the mass of the body you are modeling in the Mass field.

4 Select the units of mass from the adjacent units list.

5 Enter a 3-by-3 matrix representing the body’s inertia tensor relative to its
center of gravity coordinate system (CG CS) origin and axes in the Inertia
field (see “Determining Inertia Tensors for Common Shapes” on page 1-13).

6 Enter the initial positions of the body’s CG and coordinate systems in the
Position tab.

7 Enter the initial orientation of the body’s CG and coordinate systems in
the Orientation tab.

8 Click OK or Apply.

Determining Inertia Tensors for Common Shapes
The following table enables you to determine the inertia tensors for some
common shapes. For each shape of mass m, the table lists the shape’s principal
moments of inertia, I1, I2, and I3, along the x-, y-, and z-axes of the shape’s
CG coordinate system.

Shape I1 I2 I3
Thin rod of length L aligned
along z

mL2/12 mL2/12 0

Sphere of radius R 2mR2/5 2mR2/5 2mR2/5

Cylinder of radius R and
height h aligned along z

(m/4)(R2 +
h2/3)

(m/4)(R2 +
h2/3)

mR2/2

1-13

1 Modeling Mechanical Systems

Shape I1 I2 I3
Rectangular parallelopiped
of sides a, b, and c aligned
along x, y, z, respectively

(m/12)(b2 +
c2)

(m/12)(a2 +
c2)

(m/12)(a2 +
b2)

Cone of base radius R and
height h along z

(m/4)(3R2/5
+ h2)

(m/4)(3R2/5
+ h2)

3mR2/10

Ellipsoid of semiaxes a, b,
and c aligned along x, y, z,
respectively

(m/5)(b2 + c2) (m/5)(a2 + c2) (m/5)(a2 + b2)

The corresponding inertia tensor for the shape is the following 3-by-3 matrix:

I
I

I

1

2

3

0 0
0 0
0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Working with Body Coordinate Systems
Every SimMechanics body has Body coordinate systems (CSs) attached to it.
The location of a body CS is the origin of that CS. The CS’s rectangular x-y-z
coordinate axes are rotated at some orientation. You set up body CS origins
and orientations before running your model. But once the bodies start to
move, the origins and orientations of a body’s CSs remain fixed in the body.
The elements of a body’s inertia tensor also remain fixed in the body. Consult
“Representing Motion” for more about orienting bodies and body CSs.

The sections “Managing Body Coordinate Systems” on page 1-17 and
“Creating Body CS Ports” on page 1-18 explain how to create custom Body
coordinate systems and Body CS ports or delete existing ports.

Setting a Body CS’s Position
The Position tab of a Body block’s dialog box allows you to specify the
position of any of a body’s local coordinate systems.

The Translated from Origin of and Components in Axes of lists in the
tab together specify which other of your machine’s coordinate systems you

1-14

Modeling Grounds and Bodies

use as reference points and orientations to set up the coordinate systems of
the body you are configuring.

To specify the position of a Body CS,

1 Open the Body block’s dialog box.

The dialog box’s Position tab lists the body’s local coordinate systems in
a table.

Each row specifies the position of the coordinate system specified in the
Name column.

2 Select the units in which you want to specify the origin of the Body CS from
the CS’s Units list.

3 Specify the reference coordinate systems for the Body CS, i.e., the
coordinate systems relative to which you want to measure the Body CS
origin and the orientation of the Body CS’s coordinate axes. The choices are
World, the adjoining CS, and other Body CSs on the same Body.

You must directly or indirectly define all Body CSs by reference to a
Ground or to World. Indirect reference means that you specify a Body CS
relative to another CS and so on, in a chain of references that ultimately
ends in a Ground or World.

1-15

1 Modeling Mechanical Systems

You do this by selecting the origin and orientation of the specification CS
from the Body CS’s Translated from Origin of and Components in
Axes of lists, respectively. For example, suppose that you want to specify
the position of CS2 relative to another coordinate system, whose origin is at
the origin of CS1 but whose axes run parallel to those of the CG CS. Then
you would select CS1 from the Translated from Origin of list of CS2 and
CG from the Components in Axes of list of CS2.

4 Enter a vector specifying the location of the Body CS in the Origin
Position Vector [x y z] field of the CS.

The components of the vector must be in the units that you selected and
relative to the coordinate system that you selected. For example, suppose
that you had selected m as the unit for specifying CS2’s origin and CS1
and World as the CSs specifying the origin and orientation for CS2. Now
suppose that you want to specify the location of CS2 as one meter to the
right of CS1 along the World x-axis. Then you would enter [1 0 0] as
CS2’s position vector.

5 Click Apply to accept the position setting or OK to accept the setting and
dismiss the dialog box.

Setting a Body CS’s Orientation
The Orientation tab of a Body block’s dialog box allows you to specify the
orientation of any of a body’s local coordinate systems.

To specify the orientation of a Body CS,

1-16

Modeling Grounds and Bodies

1 Open the Body block’s dialog box.

2 Select the dialog box’s Orientation tab.

3 Select the units (degrees or radians) in which you want to specify the
orientation of the CS from the CS’s Units list.

4 Select the coordinate system relative to which you want to specify the
orientation of the Body CS from the Body CS’s Relative CS list. The
choices are World, the adjoining CS, and other Body CSs on the same Body.

5 Select the convention you want to use to specify the orientation of the Body
CS from the CS’s Specified Using Convention list.

6 Enter a vector that specifies the orientation of the Body CS relative to
the CS you choose for that purpose, according to the selected specification
convention.

7 Click Apply to accept the orientation setting or OK to accept the setting
and dismiss the dialog box.

Managing Body Coordinate Systems
You will often need to modify the default Body coordinate systems of a Body
block. You might want to connect a Body to more than two Joints, in which
case you need not only more Body CSs, but their Body CS ports as well.
Connecting Actuators and Sensors to Bodies requires a Body CS and Body
CS port for each connection.

The Body coordinate systems tab of a Body block’s dialog box contains a row
of buttons that allow you to add, delete, and reorder a Body’s local coordinate
systems.

1-17

1 Modeling Mechanical Systems

To use these buttons, select a Body CS in the CS table and select

• Delete to remove the selected CS from the table

• Up to move the CS’s entry one row up in the CS table

• Down to move the CS’s entry one row down in the CS table

Select Add to add a new CS.

Creating Body CS Ports
To add or delete a port from a Body block’s icon, open the block’s dialog box
and select or clear the CS’s Show Port check box in the dialog box’s Body CS
table. Click OK or Apply to confirm the change.

1-18

Modeling Degrees of Freedom

Modeling Degrees of Freedom

In this section...

“About Joints” on page 1-19

“Modeling Joints” on page 1-20

“Creating a Joint” on page 1-27

“Modeling Massless Connectors” on page 1-30

“Modeling Disassembled Joints” on page 1-34

About Joints
A SimMechanics joint represents the degrees of freedom (DoF) that one body
(the follower) has relative to another body (the base). The base body can be
a movable rigid body or a ground. Unlike a physical joint, a SimMechanics
joint has no mass, although some joints have spatial extension (see “Modeling
Massless Connectors” on page 1-30).

A SimMechanics joint does not necessarily imply a physical connection
between two bodies. For example, a SimMechanics Six-DoF joint allows the
follower, e.g., an airplane, unconstrained movement relative to the base, e.g.,
ground, and does not require that the follower ever come into contact with
the base.

SimMechanics joints only add degrees of freedom to a machine, because the
Body blocks carry no degrees of freedom. Contrast this with physical joints,
which both add DoFs (with axes of motion) and remove DoFs (by connecting
bodies). See “Counting Model Degrees of Freedom” on page 1-89 for more
on this point.

The SimMechanics Joints Library provides an extensive selection of blocks for
modeling various types of joints. This section explains how to use these blocks.

1-19

1 Modeling Mechanical Systems

Note A SimMechanics joint represents the relative degrees of freedom of
one body relative to another body. Only if a joint is connected on one side
to a ground and on the other to a body does the joint represent an absolute
DoF of the body with respect to World.

Modeling Joints
Modeling with Joint blocks requires an understanding of the following key
concepts:

• Joint primitives

• Joint types

• Joint axes

• Joint directionality

• Assembly restrictions

Joint Primitives
Each Joint block bundles together one or more joint primitives that together
specify the degrees of freedom that a follower body has relative to the base
body. The following table summarizes the joint primitives found singly or
multiply in Joint blocks.

Primitive
Type Symbol Degrees of Freedom

Prismatic P One degree of translational freedom along a
prismatic axis

Revolute R One degree of rotational freedom about a revolute
axis

Spherical S Three degrees of rotational freedom about a pivot
point

Weld W Zero degrees of freedom

1-20

Modeling Degrees of Freedom

Joint Types
The blocks in the SimMechanics Joint Library fall into the following
categories:

• Primitive joints

Each of these blocks contains a single joint primitive. For example, the
Revolute block contains a revolute joint primitive.

• Composite joints

These blocks contain combinations of joint primitives, enabling you to
specify multiple rotational and translational degrees of freedom of one body
relative to another. Some model idealized real joints, for example, the
Gimbal and Bearing joints.

1-21

1 Modeling Mechanical Systems

Others specify abstract combinations of degrees of freedom. For example,
the Six-DoF block specifies unlimited motion of the follower relative to
the base.

The Custom Joint allows you to create joints with any desired combination
of rotational and translational degrees of freedom, in any order. The
prefabricated composite Joints of the Joints library have the type and order
of their primitives fixed. See “Axis Order” on page 1-24.

• Massless connectors

These blocks represent extended joints with spatially separated joint
primitive axes, for example, a Revolute-Revolute Massless Connector.

• Disassembled joints

1-22

Modeling Degrees of Freedom

These blocks represent joints not assembled until simulation starts — for
example, a Disassembled Prismatic.

See “Assembly Restrictions” on page 1-26 and “Modeling Disassembled
Joints” on page 1-34.

Joint Axes
Joint blocks define one or more axes of translation or rotation along which
or around which a follower block can move in relation to the base block. The
axes of a Joint block are the axes defined by its component primitives:

• A prismatic primitive defines an axis of translation.

• A revolute primitive defines an axis of revolution.

• A spherical primitive defines a pivot point for axis-angle rotation.

For example, a Planar Joint block combines two prismatic axes and hence
defines two axes of translation.

Axis Direction. By default the axes of prismatic and revolute primitives
point in the same direction as the z-axis of the World coordinate system (CS).
A Joint block’s dialog box allows you to point its prismatic and revolute axes
in any other direction (see “Directing Joint Axes” on page 1-28).

1-23

1 Modeling Mechanical Systems

Axis Order. Composite SimMechanics Joints execute their motion one joint
primitive at a time. A joint that defines more than one axis of motion also
defines the order in which the follower body moves along each axis or about a
pivot. The order in which the axes and/or pivot appear in the Joint block’s
dialog box is the order in which the follower body moves.

Different primitive execution orders are physically equivalent, unless the
joint includes one spherical or three revolute primitives. Pure translations
and pure two-dimensional rotations are independent of primitive ordering.

Axis Span. The span of the primitive axes is the complete space spanned by
their combination. For example, one primitive axis defines a line, and two
primitive axes define a plane.

Joint Directionality
Directionality is a property of a joint that determines the dependence of the
joint on the sign of forces or torques applied to it. A joint’s directionality also
determines the sign of signals output by sensors attached to the joint. Every
SimMechanics joint in your model has a directionality. You must be able to
determine the directionality of a joint in order to actuate it correctly and to
interpret the output of sensors attached to it.

A joint’s follower moves relative to the joint’s base. The joint’s directionality
takes into account the joint type and the direction of the joint’s axis, as follows.

1-24

Modeling Degrees of Freedom

Directionality of a Prismatic Joint. If the joint is prismatic, a positive force
applied to the joint moves the follower in the positive direction along the axis
of translation. A sensor attached to the joint outputs a positive signal if the
follower moves in a positive direction along the joint’s axis of translation
relative to the base.

Directionality of a Revolute Joint. If the joint is revolute, a positive
torque applied to the joint rotates the follower by a positive angle around
the joint’s axis of rotation, as determined by the right-hand rule. A sensor
attached to the revolute joint outputs a positive signal if the follower rotates
by a positive angle around the joint’s axis of revolution, as determined by
the right-hand rule.

1-25

1 Modeling Mechanical Systems

Directionality of a Spherical Joint. Spherical joint directionality means
the positive sense of rotation of the three rotational DoFs. Pick a rotation
axis, rotating using the right-hand rule from the base Body CS axes. Then
rotate the follower Body about that axis in the right-handed sense.

Directionality and Ordering of Composite Joint Primitives. Each joint
primitive separately has its own directionality, based on the primitive’s
type and the direction of its axis of translation or rotation. In each case,
the follower body of the composite joint moves along or around the joint
primitive’s axis relative to the base body.

The order of primitives in the composite Joint’s dialog determines the spatial
construction of the joint.

The first listed primitive is attached to the base, the second to the first, and so
on, down to the follower, which is attached to the last primitive.

• Moving the first listed primitive moves the subsequent primitives in the
list, including the follower, relative to the base.

• Moving any primitive moves the primitives below it in the list (but not
those above it), as well as the follower.

• Moving the last listed primitive moves only the follower.

Changing the Directionality of a Joint. You can change the directionality
of a joint by either

• Reversing and reconnecting the Joint block to reverse the roles of the base
and follower bodies.

• Reversing the sign (direction) of the joint axis.

Assembly Restrictions
Many joints impose one or more restrictions, called assembly restrictions,
on the placement of the bodies that they join. The conjoined bodies must
satisfy these restrictions at the beginning of simulation and thereafter within
assembly tolerances that you can specify (see “Controlling Machine Assembly”
on page 2-12). For example, the Body CSs attached to revolute and spherical
joints must coincide within assembly tolerances; the Body CSs attached to a
Prismatic joint must lie on the prismatic axis within assembly tolerances; the

1-26

Modeling Degrees of Freedom

Body CSs attached to a Planar joint must be coplanar with Planar primitives,
etc. Composite joints, e.g., the Six-DoF joint, impose assembly restrictions
equal to the most restrictive of its joint primitives. See the block reference for
each Joint for information on the assembly restrictions, if any, that it imposes.

Positioning bodies so that they satisfy a joint’s assembly restrictions is called
assembling the joint.

All SimMechanics Joints except blocks in the Disassembled Joints sublibrary
require manual assembly. Manual assembly entails your setting the initial
positions of conjoined bodies to valid locations (see “Assembling Joints”
on page 1-29). The simulation assembles disassembled joints during the
model initialization phase. It assumes that you have already assembled all
other joints before the start of simulation. Hence joints that require manual
assembly are called assembled joints. During model initialization and at
each time step, the simulation also checks to ensure that your model’s bodies
satisfy all assembly restrictions. If any of your model bodies fails to satisfy
assembly restrictions, the simulation stops and displays an error message.

Creating a Joint
A joint must connect exactly two bodies. To create a joint between two bodies:

1 Select the Joint from the SimMechanics Joints library that best represents
the degrees of freedom of the follower body relative to the base body.

2 Connect the base connector port of the Joint block (labeled B) to the
Body CS origin on the base block that serves as the point of reference for
specifying the degrees of freedom of the follower block.

3 Connect the follower connector port of the Joint block (labeled F) to the
Body CS origin on the follower block that serves as the point of reference
for specifying the degrees of freedom of the base block.

4 Specify the directions of the joint’s axes (see “Directing Joint Axes” on
page 1-28).

5 If you plan to attach Sensors or Actuators to the Joint, create an additional
port for each Sensor and Actuator (see “Creating Actuator and Sensor Ports
on a Joint” on page 1-28).

1-27

1 Modeling Mechanical Systems

6 If the joint is an assembled joint, assemble the bodies joined by the joint
(see “Assembling Joints” on page 1-29).

Directing Joint Axes
By default the prismatic and revolute axes of a joint point in the same
direction as the z-axis of the World coordinate system. To change the direction
of the axis of a joint primitive:

1 Open the joint’s dialog box and select a reference coordinate system for
specifying the axis direction from the coordinate system list associated
with the axis primitive.

The options are the World coordinate system or the local coordinate
systems of the base or follower attachment point. Choose the coordinate
system that is most convenient.

2 Enter in the primitive’s axis direction field a vector that points in the
desired direction of the axis in the selected coordinate system.

Creating Actuator and Sensor Ports on a Joint
To create additional connector ports on a Joint for Actuators and Sensors,
open the Joint’s dialog box and set the Number of sensor/actuator ports to
the number of Actuators and Sensors you plan to attach to the Joint.

1-28

Modeling Degrees of Freedom

Apply the setting by clicking OK or Apply.

Assembling Joints
You must manually assemble all assembled joints in your model. Assembling
a joint requires setting the initial positions of its attached base and follower
Body CSs such that they satisfy the assembly restrictions imposed by the
joint (see “Assembly Restrictions” on page 1-26). Consider, for example, the
“Modeling and Simulating a Closed-Loop Machine”.

This model comprises three bars connected by revolute joints to each other
and to two ground points. The model collocates the CS origins of the Body CS
ports connected to each Joint, thereby satisfying the assembly restrictions
imposed by the revolute joints.

Assembled Revolute Joint in the Four Bar Mechanism

1-29

1 Modeling Mechanical Systems

Modeling Massless Connectors
Massless connectors simplify the modeling of machines that use a relatively
light body to connect two relatively massive bodies. For example, you could
use a Body block to model such a connector. But the resulting equations of
motion might be ill-conditioned, because that connecting body’s mass is small,
and the simulation can be slow or prone to failure. A massless connector also
avoids global inconsistencies that can arise if you use a Constraint block to
model the connector.

A massless connector consists of a pair of joints located a fixed distance apart.
Think of a massless connector as a massless rod with a joint primitive affixed
at each end.

The initial orientation and length of the massless connector are defined by
a vector drawn from the base attachment point to the follower attachment
point. During simulation, the orientation of the massless connector can
change but not its length. In other words, the massless connector preserves
the initial separation of the base and follower bodies during machine motion.

1-30

Modeling Degrees of Freedom

Note You cannot actuate or sense a massless connector.

The SimMechanics Joints/Massless Connectors sublibrary contains these
Massless Connectors:

• Two revolute primitives (Revolute-Revolute)

• A revolute primitive and a spherical primitive (Revolute-Spherical)

• Two spherical primitives (Spherical-Spherical)

Creating a Massless Connector
To create a massless connector between two bodies:

1 Drag an instance of a Massless Connector block from the Massless
Connectors sublibrary into your model and connect it to the base and
follower blocks.

You can set the direction of the axes of revolute primitives. If necessary,
point the axes of the connector’s revolute joints in the direction required by
the dynamics of the machine you are modeling.

2 Assemble the connector by setting the initial positions of the base and
follower body attachment points to the initial positions required by your
machine’s structure.

During simulation, the massless connector maintains the initial separation
between the bodies though not necessarily the initial relative orientation.

1-31

1 Modeling Mechanical Systems

Massless Connector Example: Triple Pendulum
Consider a triple pendulum comprising massive upper and lower bodies and a
middle body of negligible mass. The following model uses a Revolute-Revolute
massless connector to model such a pendulum.

In this model, the joint axes of the Revolute-Revolute connector have their
default orientation along the World z-axis. As a result, the lower arm (Body1)
rotates parallel to the World’s x-y plane.

1-32

Modeling Degrees of Freedom

Massless Connector Example: Four Bar Mechanism
The following model replaces one of the bars (Bar2) in the mech_four_bar
model from the Demos library with a Revolute-Revolute massless connector.

This model changes the Body CS origins of Bar3 to the following values.

Name Origin position vector Translated from origin of

CG [-0.027 -0.048 0] CS1

CS1 [0.054 0.096 0] CS2

CS2 [0 0 0] ADJOINING (Ground_2)

This creates a separation between Bar3 and Bar1 equal to the length of Bar2
in the original model.

1-33

1 Modeling Mechanical Systems

Try simulating both the original and the modified model. Notice that the
massless connector version moves differently, because you eliminated the
mass of Bar2 from the model. Notice also that the massless bar does not
appear in the animation of the massless connector version of the model.

Modeling Disassembled Joints
The SimMechanics Joints/Disassembled Joints sublibrary contains a set
of joints automatically assembled at the start of simulation; that is, the
simulation positions the joints such that they satisfy the assembly restrictions
imposed by the type of joint, e.g., prismatic or revolute. Using these joints
eliminates the need for you to assemble the joints yourself.

Disassembled joints differ from assembled joints in significant ways. An
assembled joint primitive has only one axis of translation or revolution or one
spherical pivot point. A disassembled prismatic or revolute primitive has two
axes of translation or rotation, one for the base and one for the follower body.
A disassembled spherical primitive similarly has two pivot points.

1-34

Modeling Degrees of Freedom

Caution Disassembled joints can appear only in closed loops. Each closed
loop can contain at most one disassembled joint.

The dialog box for a disassembled joint allows you to specify the direction
of each axis.

During model assembly, the simulation determines a common axis of
revolution or translation that satisfies model assembly restrictions, and aligns
the base and follower axes along the common axis.

Controlling Automatic Assembly and the Assembled
Configuration
If your machine contains Joint Initial Condition Actuator (JICA) blocks,
the machine is moved from its home to its initial configuration by applying
the initial condition information to the machine’s joints first. Then any
disassembled joints are assembled, leading to the assembled configuration.

During model assembly, the simulation might move bodies connected
by assembled joints from their initial positions in order to assemble the
disassembled joints. The SimMechanics solution to the assembly problem
cannot be predicted beforehand, except in simple cases. If you do not want
bodies to move during model assembly, use JICA blocks to specify the initial
positions of bodies whose positions you want to remain fixed during the
assembly process. The resulting assembly will satisfy the initial conditions
specified by the JICA blocks.

1-35

1 Modeling Mechanical Systems

Disassembled Joint Example: Four Bar Mechanism
This example creates and runs a model of a disassembled four bar machine.

Refer to the tutorial, “Modeling and Simulating a Closed-Loop Machine”,
and the mech_four_bar demo:

1 Disconnect the Joint Sensor1 block from the Revolute3 block.

2 Replace Revolute3 with a Disassembled Revolute block from the
Joints/Disassembled Joints sublibrary.

3 Open the Disassembled Revolute dialog box and, under Axis of Action for
both Base and Follower axes, enter [0 0 1]. Close the dialog.

4 Open the Bar2 dialog box and dislocate the joint by displacing Bar2’s CS2
origin from Bar 3’s CS1 origin.

1-36

Modeling Degrees of Freedom

Do this by entering a nonzero vector under Origin Position Vector [x
y z] for CS2, then changing the Translated from Origin of pull-down
entry to ADJOINING. CS1 on Bar3 is the Adjoining CS of CS2 of Bar2.
Close the dialog.

5 To avoid circular CS referencing, you must check the Bar3 dialog entry for
CS1 on Bar3. Be sure that CS1 on Bar3 does not reference CS2 on Bar2.
Reference it instead to CS2 on Bar3, which adjoins Ground_2.

6 Rerun the model.

Note that the motion is different from the manually assembled case.

1-37

1 Modeling Mechanical Systems

Constraining and Driving Degrees of Freedom

In this section...

“About Constraints” on page 1-38

“Types of Mechanical Constraints” on page 1-38

“What Constraints and Drivers Do” on page 1-39

“Directionality of Constraints and Drivers” on page 1-40

“Solving Constraints” on page 1-40

“Restrictions on Using Constraint and Driver Blocks” on page 1-41

“Constraint Example: Gear Constraint” on page 1-41

“Driver Example: Angle Driver” on page 1-43

About Constraints
The SimMechanics Constraints & Drivers Library provides a set of blocks
to model constraints on the relative motions of two bodies. You model the
constraint by connecting the appropriate Constraint or Driver block between
the two bodies. As with joints, the blocks each have a base and follower
connector port, with the body connected to the follower port viewed as moving
relative to the body connected to the base port. For example, the following
model constrains Body2 to move along a track that is parallel to the track
of Body1.

Types of Mechanical Constraints
Constraint and Driver blocks enable you to model time-independent
constraints or time-dependent drivers.

1-38

Constraining and Driving Degrees of Freedom

• Constraint and unactuated Driver blocks model scleronomic
(time-independent) constraints.

• Actuated Driver blocks (see “Actuating a Driver” on page 1-62) model
rheonomic (time-dependent) constraints.

Scleronomic constraints lack explicit time dependence; that is, their time
dependence appears only implicitly through the coordinates x. Rheonomic
constraints have explicit time dependence as well, in addition to implicit time
dependence through the x.

Holonomic constraint functions depend only on body positions, not velocities:

f tB F(, ;)x x = 0

Constraints of the form

g tB B F F(, , , ;)x x x x� � = 0

can sometimes be integrated into a form dependent only on positions; but if
not, they are nonholonomic. For example,

• The one-dimensional rolling of a wheel of radius R along a line (the x-axis)
imposes a holonomic constraint, x = Rθ.

• The two-dimensional rolling of a sphere of radius R on a plane (the
xy-plane) imposes a nonholonomic constraint, ds = R·dθ, with ds2 = dx2

+ dy2. This constraint is nonholonomic because there is not enough
information to solve the constraint independently of the dynamics.

What Constraints and Drivers Do
Constrained and driven bodies are still free to respond to externally imposed
forces/torques, but only in a way consistent with the constraints.

Constraints and drivers can only remove degrees of freedom from a machine.
Constraints and unactuated Drivers prevent the machine from moving in
certain ways. Unactuated Drivers hold the constrained degrees of freedom
between the connected pair of bodies in their initial state. Actuated Drivers
externally impose a relative motion between pairs of bodies, starting with the
bodies’ initial state. See “Counting Model Degrees of Freedom” on page 1-89.

1-39

1 Modeling Mechanical Systems

This section discusses modeling constraints and drivers in a general way.

• “Directionality of Constraints and Drivers” on page 1-40

• “Solving Constraints” on page 1-40

• “Restrictions on Using Constraint and Driver Blocks” on page 1-41

The section ends with two examples, “Constraint Example: Gear Constraint”
on page 1-41 and “Driver Example: Angle Driver” on page 1-43.

See the reference pages for information on the specific constraint that a
Constraint or Driver block imposes.

Directionality of Constraints and Drivers
Like joints, constraints and drivers have directionality. The sequence of base
to follower body determines the directionality of the constraint or driver. The
directionality determines how the sign of Driver Actuator signals affects the
motion of the follower relative to the base and the sign of signals output by
constraint and driver sensors.

Solving Constraints
A SimMechanics simulation uses a constraint solver to find the motion, given
the model’s Constraint and Driver blocks. You can specify both the constraint
solver type and the constraint tolerances used to find the constraint solution.
See “Maintaining Constraints” on page 2-12 for more information.

Mitigating Constraint Singularities
Some constraints, whether time-independent (Constraints) or time-dependent
(Drivers), can become singular when the constrained bodies take on certain
relative configurations; for example, if the two body axes line up when the
Bodies are connected by an Angle Driver. The simulation slows down as a
constraint becomes singular.

If you find a constrained model running slowly, consider selecting the
Use robust singularity handling option in the Constraints tab of
your machine’s Machine Environment block dialog. See “Handling Motion
Singularities” on page 2-18.

1-40

Constraining and Driving Degrees of Freedom

Restrictions on Using Constraint and Driver Blocks
The following restrictions apply to the use of Constraint and Driver blocks
in a model:

• Constraint and Driver blocks can appear only in closed loops. A closed loop
cannot contain more than one Constraint or Driver block.

• A Constraint or Driver must connect exactly two Bodies.

Constraint Example: Gear Constraint
The mech_gears model illustrates the Gear Constraint. Open the Body and
Gear Constraint blocks.

Body1 and Body2 have their CG positions 2 meters apart. CS1 and CS2 on
Body1 are collocated with the Body1 CG, and similarly, CS1 and CS2 on
Body2 are collocated with the Body2 CG.

1-41

1 Modeling Mechanical Systems

The Gear Constraint between them has two pitch circles. One is centered
on the CS2 at the base Body, which is Body1, and has radius 1.5 meters.
The other is centered on CS1 at the follower Body, which is Body2, and has
radius 0.5 meters. The distance between CS2 on Body1 and CS1 on Body2 is 2
meters. The sum of the pitch circle radii equals this distance, as it must.

Visualizing the Gear Motion
The model is set up to open the visualization window automatically upon
simulation start, with convex hulls, as explained in the SimMechanics
Visualization and Import Guide. Start the simulation and watch the CG CS
axis triads spin around. The CG triad at Body2 rotates three times faster
than the CG triad at Body1, because the pitch circle centered on Body2 is
three times smaller.

You can see the same behavior in the Scope. The upper plot shows the motion
of Revolute2, and the lower plot the motion of Revolute1. Note that angular
motion is mapped to the interval (-180o, +180o] degrees.

1-42

Constraining and Driving Degrees of Freedom

The Gear Constraint is inside a closed loop formed by

Ground_1–Revolute1–Body1–Gear Constraint–Body–Revolute2–Ground_2

Although Ground_1 and Ground_2 are distinct blocks, they represent
different points on the same immobile ground at rest in World. So the blocks
form a loop.

Driver Example: Angle Driver
The following two models illustrate the Angle Driver, both without and with a
Driver Actuator.

The Angle Driver Without a Driver Actuator
The first is mech_angle_unact. Open the Body2 block.

1-43

1 Modeling Mechanical Systems

The bodies form a double pendulum of two rods. The Body Sensor is connected
to Body2 at CS3 = CS2 and measures all three components of Body2’s angular
velocity vector with respect to the ground.

The Angle Driver is connected between Body2 and Ground_2. Because the
Angle Driver is not actuated in this model, it acts during the simulation as a
time-independent constraint to hold the angle between Body2 and Ground_2
constant at its initial value.

Visualizing the Angle Driver Motion
The model is set up to open the visualization window automatically upon
simulation start, with convex hulls, as explained in the SimMechanics
Visualization and Import Guide.

Start the simulation. The upper body swings like a pendulum, but the lower
body maintains its horizontal orientation with respect to the horizontal
ground. The Scope measures Body2’s angular velocity with respect to ground,
and this remains at zero.

1-44

Constraining and Driving Degrees of Freedom

The Angle Driver With a Driver Actuator
The second model is mech_angle_act. Open the Driver Actuator block.

The Driver Actuator drives the Angle Driver block. Here, the Actuator accepts
a constant angular velocity signal from the Simulink blocks. The Actuator
also requires the angle itself and the angular acceleration, together with the
angular velocity, in a vector signal format. The Angle Driver’s angle signal
is added to the angle’s initial value.

The Body Sensor again measures three components of Body2’s angular
velocity with respect to the ground. Constant1 drives the angle at 15o/second.
While the simulation is running, this angle changes at the constant rate. At
the same time, the assembly and the constant length of the two pendulum
rods must be maintained by Simulink, while both rods are subject to gravity.
As the two axes line up, the mutual constraint between the bodies enforced
the Driver becomes singular. The simulation slows down.

As in the Gear Constraint model, the two Ground blocks in these models
represent points on the same immobile ground at rest in World, so the Angle
Driver is part of a closed loop.

1-45

1 Modeling Mechanical Systems

Cutting Machine Diagram Loops

In this section...

“Rules for Valid Machine Diagram Loops” on page 1-46

“Rules for Automatic Loop Cutting” on page 1-46

“Specifying a Loop Joint for Cutting” on page 1-47

“Displaying the Cut Joints” on page 1-47

“For More About Disassembled and Cut Joints” on page 1-47

“For More About Constraints and Drivers” on page 1-47

Rules for Valid Machine Diagram Loops
In a SimMechanics model, you form a closed loop by the closure of
SimMechanics blocks, of any type, on themselves. From a starting point, you
can trace a path around a closed loop back to the starting point with no jumps
or cuts. A closed loop is valid if it contains:

• At least one Joint block

• No more than one Disassembled Joint block

• No more than one Constraint or Driver block

To simulate a model containing closed loops, the SimMechanics simulation
internally converts a closed-loop model to an open-topology tree model. This is
accomplished by internally cutting each of the model’s closed loops once, at
a joint, constraint, or driver block, then replacing each cut by an additional
internal constraint.

Rules for Automatic Loop Cutting
A SimMechanics simulation follows these loop-cutting rules.

• If a loop contains a constraint, driver, or disassembled joint, the simulation
cuts the loop at one of those blocks. Selecting a preferred cut joint has
no effect.

1-46

Cutting Machine Diagram Loops

• If the loop does not contain a constraint, driver, or disassembled joint, the
simulation cuts the loop at the preferred cut joint if you have specified one.

• If the loop does not contain a constraint, driver, or disassembled joint, and
you have not specified a preferred cut joint, the simulation cuts the loop at
the joint with the most degrees of freedom.

Note A SimMechanics simulation cuts a closed loop at a Disassembled Joint,
Constraint, or Driver block, if one or more of these blocks is present, regardless
of other Joints also present in the loop or of your preferred cut choice.

Specifying a Loop Joint for Cutting
You can specify a joint to cut if the loop does not contain a disassembled joint,
constraint, or driver. Open the joint’s dialog box and select theMark as the
preferred cut joint check box on the Advanced tab in that joint’s dialog
Parameters area.

Displaying the Cut Joints
To display automatically cut joints in your model, select the Mark
automatically cut joints check box in the Diagnostics area of the
SimMechanics node of your model’s Configuration Parameters dialog. See
“Configuring SimMechanics Simulation Diagnostics” on page 2-18.

For More About Disassembled and Cut Joints
Refer to “Modeling Disassembled Joints” on page 1-34 for more on
disassembled joints. Consult “Verifying Model Topology” on page 1-85 to
learn more about closed loop analysis.

For More About Constraints and Drivers
A SimMechanics simulation represents a cut Joint, Constraint, or Driver as
an additional internal constraint. See “Constraining and Driving Degrees of
Freedom” on page 1-38 for more about these specialized blocks.

1-47

1 Modeling Mechanical Systems

Applying Motions and Forces

In this section...

“About Actuators” on page 1-48

“Actuating a Body” on page 1-50

“Varying a Body’s Mass and Inertia Tensor” on page 1-53

“Actuating a Joint” on page 1-56

“Actuating a Driver” on page 1-62

“Specifying Initial Positions and Velocities” on page 1-62

About Actuators
The SimMechanics Actuators & Sensors Library provides a set of Actuator
blocks that enable you to apply time-dependent forces and motions to bodies,
joints, and drivers. You can also vary a body’s mass and inertia tensor.

Caution Do not connect an Actuator to a Ground. An error results if you
attempt to simulate or update a model containing such a connection. This is
because ground is immobile and cannot be actuated.

You can use Actuator blocks to perform the following tasks:

• Apply a time-varying force or torque to a body or joint.

• Specify the position, velocity, and acceleration of a joint or driver as a
function of time.

• Specify the initial position and velocity of a joint primitive.

• Specify the mass and/or inertia tensor of a body as a function of time.

In general, actuators can apply any combination of forces and motions to a
machine provided that

• The applied forces and motions are consistent with each other and with the
machine’s geometry, constraints, and assembly restrictions.

1-48

Applying Motions and Forces

• The actuation signals representing these forces and motions remain
consistent when differentiated or integrated. See “Stabilizing Numerical
Derivatives in Actuator Signals” on page 1-49.

• It is possible to find a unique solution for the motion of each actuated
degree of freedom (DoF).

Stabilizing Numerical Derivatives in Actuator Signals
To actuate a physical system modeled by blocks, you often need to differentiate
an incoming Simulink actuation signal.

Simulink provides a Derivative block for numerical differentiation of a signal.
However, this block’s output is sometimes not stable or accurate enough for
Physical Modeling purposes. Recommended alternatives to the Derivative
block include the following.

Integrating Higher Derivative Signals. Start by specifying the highest
derivative signal (such as an acceleration), then integrate this signal to obtain
lower derivative signals (such as a velocity) using the Integrator block.

Transforming Signals with Transfer Functions. To differentiate a signal,
use a transfer function block (Transfer Fcn). This block actually performs a
Laplace transform convolution to smooth the output, which is not exactly
the derivative.

You can eliminate this drawback by filtering the original signal f, then
defining exact derivatives dF/dt, etc., of the filtered signal F by adding higher
orders to the transfer function numerator. The order of the denominator
should be equal to or greater than the number of output signals. Use the
filtered signal F (instead of f), as well as the filtered derivatives.

In this example, the constant τ represents a smoothing time. The transfer
functions define a filtered signal and its first derivative, two signals in all.
Therefore, the transfer function denominator should be second order or higher.

1-49

1 Modeling Mechanical Systems

Examples of Numerical Derivatives of Actuator Signals
A SimMechanics example requiring numerical derivatives is motion actuation
of a joint, which requires position, velocity, and acceleration of each joint
primitive as a function of time. You specify this information as a set of
Simulink signals, which you can stabilize with one of the previous methods.

The transfer function method is illustrated by the mech_stewart_control
model. For an example of the derivative-integration method, see the
mech_body_driver model.

Actuating a Body
You can use the Body Actuator to apply forces and/or torques, but not motions,
to bodies. (You can apply motions to a body indirectly, using Joint Actuators.
See “Applying Motions to Bodies” on page 1-52.)

To actuate a body,

1 If there is not already an unused connector port available for the Actuator
create a Body CS port on the Body for the Actuator. See the Body block
reference if you need to learn how.

2 Drag a Body Actuator block from the Sensors & Actuators library into your
model and connect its output port to a Body CS port on the Body.

3 Open the Actuator’s dialog box.

4 Choose to apply a force or torque to the body:

• Select the Applied force check box if you want to apply a force to the
body, and select the units of force from the adjacent list.

1-50

Applying Motions and Forces

• Select the Applied torque check box if you want to apply a torque to
the body, and select the units of torque from the adjacent list.

5 Select the coordinate system used to specify the applied torque from the
With respect to CS list.

The list allows you to choose either the World CS or the Body CS of the port
to which you attached the Actuator.

6 Create vector signals that specify the value of the applied torque and force
at each time step.

You can use any Simulink source block (for example, an Input port block or
a Sine Wave block) or combination of Simulink blocks to create the Body
Actuator signal. You can also use the output of a Sensor block connected
to the Body as input to the Actuator, thereby creating a feedback loop.
Such loops are useful for modeling springs and dampers (see “Validating
Mechanical Models” on page 1-85).

7 Connect the force and/or torque signal to the input port of the Actuator.

If you are applying both a force and a torque to the body, connect the force
and torque signals to the inputs of a two-input Mux block. Then connect
the output of the Mux block to the input of the Actuator.

Body Actuator Example: Pure Kinetic Friction
The mech_ballistic_kin_fric model in the Demos library provides an
example of how to implement pure kinetic friction. This type of friction is a
continuous force that depends on a body’s motion relative to a medium (such
as air), as well as on physical characteristics of the body. Kinetic friction,
unlike “stiction,” involves no “sticking” or locking of motion, and the friction
is not discontinuous. While you could use the Joint Stiction Actuator, this is
not necessary. This model applies air friction or drag to a projectile with
a Body Actuator.

1-51

1 Modeling Mechanical Systems

Open the Air Drag subsystem. If you double-click the block, a mask dialog box
opens asking for the drag coefficient Cd. If you right-click the block and select
Look under mask, the subsystem itself appears:

The Air Drag subsystem computes the air friction according to a standard
air friction model. (See the Aerospace Blockset documentation for more
information.) The drag always opposes the projectile’s motion and is
proportional to the product of the air density, the projectile’s cross-sectional
area, and the square of its speed.

Run the model with the default drag coefficient (zero). The XY Graph window
opens to plot the parabolic path of the projectile. Now open the Air Drag
dialog again and experiment with different drag coefficients Cd. Start with
small values such as Cd = 0.05. For a rigid sphere, Cd is two. The effect of the
drag is dramatic in that case.

Applying Motions to Bodies
The Body Actuator block cannot actuate a Body with motion signals. But you
can construct such body motion actuators with a combination of other blocks.
See “Joint Actuator Example: Body Driver” on page 1-58.

1-52

http://www.mathworks.com/products/aeroblks/

Applying Motions and Forces

Varying a Body’s Mass and Inertia Tensor
The Variable Mass & Inertia Actuator block gives you a way to vary a body’s
mass and/or inertia tensor as external functions of time. You specify these
functions with incoming Simulink signals.

Caution The Variable Mass & Inertia Actuator block does not apply any
thrust forces or torques to the Body so actuated. Mass loss or gain in a
particular direction results in thrust forces and torques on the body. You must
apply these forces/torques to the Body separately with Body Actuator blocks.

The variable mass/inertia actuator affects a body’s motion only when you
apply forces/torques on the body. When a body’s motion is determined only
by initial conditions, changing the mass or inertia tensor of a body does not
affect its motion, because the variable mass/inertia actuator does not apply
forces/torques to the body.

The Variable Mass & Inertia Actuator block changes the actuated Body’s
mass and rotational inertia by attaching an invisible body to the actuated
body at a particular Body coordinate system (CS). This invisible body has a
mass and an inertia tensor that vary in time as specified by the Actuator’s
external Simulink signal. The simulation treats the actuated body and the
invisible body as a single composite body. The composite body has a new
mass, new center of gravity (CG), and new inertia tensor compounded from its
two constituent bodies.

1-53

1 Modeling Mechanical Systems

You can add multiple Variable Mass & Inertia Actuator blocks to one Body. In
that case, the simulation treats the actuated body and all attached invisible
bodies as a single composite body. This composite body’s mass, CG, and
inertia tensor are compounded from its constituent bodies.

Attaching Variable Mass and Inertia Bodies to a Visible Body

To vary the mass and/or inertia tensor of a Body with this Actuator:

1 From the Sensors & Actuators library, drag a Variable Mass & Inertia
Actuator block into your model.

2 Attach the Actuator’s connector port to the Body CS on the Body where you
want the invisible variable mass to be. If a suitable Body CS port does not
exist on the Body, open its dialog and create one.

3 Create an external Simulink signal to model the time-varying mass and/or
inertia tensor for this invisible body. Connect it to the Variable Mass &
Inertia Actuator block’s Simulink input port.

This Simulink signal can have one, nine, or ten components, depending on
whether you are varying the mass only, the inertia tensor only, or both.

1-54

Applying Motions and Forces

Example: Simple Rocket
The following model simulates a simple rocket. It treats the rocket as a point
mass moving upward (+y direction) with an exhaust pointing downward (-y
direction). The rocket loses mass at a constant rate.

The Rocket block is the point mass. The Thrust Velocity block represents the
downward exhaust and, multiplied by the mass loss represented by the Fuel
Loss block, actuates the Rocket body with a thrust force pointing upward. The
Thrust block (a body actuator) applies this force at the local Body CS, which,
for a point rocket, is identical to the Rocket’s CG CS.

The same mass loss from the Fuel Loss block that produces the thrust force
also must vary the rocket’s mass directly. The Variable Mass Actuator block
accomplishes this by feeding the same mass loss signal to the Rocket block.

1-55

1 Modeling Mechanical Systems

Actuating a Joint
You individually actuate each of the prismatic and revolute primitives of an
assembled joint with a Joint Actuator. You can apply

• Forces or translational motions (but not both) to prismatic primitives

• Torques or rotational motions (but not both) to revolute primitives

Caution You cannot actuate spherical or weld primitives, disassembled
joints, or massless connectors.

Do not connect multiple Actuators to the same joint primitive. An error results
if you attempt to update or simulate a model containing such a connection.

Exception: You can apply a Joint Initial Condition Actuator and force or
torque actuation (including stiction) to the same primitive. You cannot apply
a Joint Initial Condition Actuator and motion actuation to the same primitive.
See “Specifying Initial Positions and Velocities” on page 1-62.

Actuating a Joint Primitive

Tip If you have multiple forces/torques or motions you want to apply to a
joint primitive, sum their values as Simulink signals first, then apply the net
result as the input to the Joint Actuator.

To actuate a prismatic or revolute joint primitive of an assembled joint:

1 Create an Actuator port on the Joint block for the primitive (see “Creating
Actuator and Sensor Ports on a Joint” on page 1-28).

2 Drag a Joint Actuator or Joint Stiction Actuator from the Sensors &
Actuators library into your model and connect its output port to the
Actuator port on the Joint.

The remaining steps in this procedure apply to the creation of a standard
Joint Actuator. For information on creating a stiction actuator, which

1-56

Applying Motions and Forces

applies classical Coulombic friction to a prismatic or revolute joint, see the
Joint Stiction Actuator block reference page.

3 Open the Joint Actuator’s dialog box.

4 Select the primitive you want to actuate from the Connected to primitive
list on the dialog box.

5 Select the type of actuation you want to apply from the Actuate with
pull-down menu, either Generalized Forces or Motion.

6 If you are actuating a prismatic primitive:

• If you selected Generalized Forces as the actuation type, select the
units of force from the Applied force units list.

• If you selected Motion as the actuation type, select the units for each
motion to be actuated (position, velocity, acceleration).

7 If you are actuating a revolute primitive:

• If you selected Generalized Forces as the actuation type, select the
units of torque from the Applied torque units list.

• If you selected Motion as the actuation type, select the units for each
motion to be actuated (angle, angular velocity, angular acceleration).

8 Click OK to apply your choices and dismiss the dialog box.

Each joint primitive that you motion-actuate is lost as a true degree of
freedom in your machine. That is because the DoF can no longer respond
freely to externally applied forces or torques. See “Counting Model Degrees
of Freedom” on page 1-89.

9 Create a signal that specifies the applied force, torque, or motions at each
time step.

You can use any Simulink source block or any combination of blocks to
create the actuator signal. You can also connect the output of a Sensor
block attached to the Joint to the Actuator input, thereby creating a
feedback loop. You can use such loops to model springs and dampers
attached to the joint.

1-57

1 Modeling Mechanical Systems

A force or torque signal must be a scalar signal. A motion signal must be
a 1-D array signal comprising three components: position, velocity, and
acceleration. The directionality of the joint determines the response of the
follower to the sign of the actuator signal (see “Joint Directionality” on
page 1-24).

10 Connect the Actuator signal to the Actuator port on the Joint.

Joint Actuator Example: Body Driver
The mech_body_driver model illustrates the use of Joint Actuators to create
a custom driver.

1-58

Applying Motions and Forces

The Body Driver subsystem accepts an 18-component signal that feeds the
coordinates, velocities, and accelerations for all six relative DoFs between
Body and Body1. The subsystem uses a Bushing block that contains three
translational and three rotational primitives to represent the relative DoFs:

You can modify the body driver to move only one of the bodies, thereby
creating a motion actuator. To move Body1 relative to World, for example,
remove the blocks Body and Weld and connect the subsystem Body Driver
directly to Ground.

1-59

1 Modeling Mechanical Systems

Joint Stiction Actuator Example: Mixed Static and Kinetic
Friction

Tip You should use the Joint Stiction Actuator block only if you need static
(locking) friction that removes one or more degrees of freedom from your
machine.
You can model pure kinetic friction (damping) with other Actuator and Sensor
blocks. See “Actuating a Body” on page 1-50 and “Adding Internal Forces”
on page 1-74.

The mech_dpen_sticky model in the Demos library illustrates a driven
double pendulum, with “sticky” friction or stiction applied to both revolute
joints with the Joint Stiction Actuator block.

1-60

Applying Motions and Forces

Open the unmasked Joint1 or Joint2 Stiction Model blocks (marked in yellow)
to view the subsystems:

Each Stiction subsystem contains a Joint Stiction Actuator block (marked
in orange) that requires static and kinetic friction coefficients via their
respective blocks. For either revolute, an angular velocity threshold, specified
through the block dialog, determines if a joint locks. Once locked, the joint
cannot move until a combination of forces reaches a threshold specified by the
Forward Stiction Limit or Reverse Stiction Limit.

1-61

1 Modeling Mechanical Systems

Run the model with different kinetic and static friction coefficients and
different velocity thresholds. View the results in the Scope blocks and through
a visualization window. You can find more details on how SimMechanics
stiction works by consulting the Joint Stiction Actuator block reference page.

Actuating a Driver
Actuating a Driver with a Driver Actuator allows you to specify the time
dependence of the rheonomic constraint applied by the Driver.

To actuate a Driver:

1 Create an additional connector port on the Driver for the Actuator.

Create the additional port in the same way you create an additional
Sensor/Actuator port on a Joint (see “Creating Actuator and Sensor Ports
on a Joint” on page 1-28).

2 Drag an instance of a Driver Actuator from the Sensors & Actuators library
into your model.

3 Connect the Actuator’s output port to the Actuator port on the Driver.

4 Create a signal that specifies the time dependence of the Driver constraint.

5 Connect the actuation signal to the input port of the Driver Actuator.

Specifying Initial Positions and Velocities
The Joint Initial Condition Actuator (JICA) block allows you to specify the
initial positions and velocities of unactuated joints and hence the bodies
attached to them. You can use JICA blocks to

• Specify nonzero initial joint velocities

The default initial velocity of a joint primitive is zero. You must use a JICA
block to specify a joint’s initial velocity if the initial velocity is not zero.

• Override the initial position settings of a body pair

The CG CS origin settings in the dialog boxes of Body blocks specify the
bodies’ initial positions. Using JICA blocks, you can override these initial

1-62

Applying Motions and Forces

body positions by resetting their relative positions in the Joints connecting
them.

Your model simulation starts with your machines at first in their home
configurations, defined by the Body dialog data. It then transforms your
machines to their initial configurations by applying JICA data.

Caution You cannot simultaneously actuate a joint primitive with a Joint
Initial Condition Actuator and motion actuation from a Joint Actuator block.

Using JICA Blocks
Specifying initial conditions on a joint primitive is a special kind of actuation,
one that occurs only once at the beginning of simulation. That is why the
JICA block resides in the Sensors & Actuators library.

Note A JICA block, unlike other Actuators, does not have an input port. The
JICA’s dialog box specifies the Actuator input completely.

With a JICA block, you can specify the initial positions and velocities of any
combination of prismatic and revolute primitives within a given Joint. (You
cannot specify ICs for spherical and weld primitives.)

To specify the initial velocity and/or position of a joint primitive:

1 Drag a JICA block from the Sensors & Actuators library and drop it into
your model window.

2 Create an additional connector port on the Joint block containing the
primitive whose initial condition you want to specify.

3 Connect the connector port on the JICA block to the new connector port on
the Joint block.

1-63

1 Modeling Mechanical Systems

Caution Do not connect the JICA block to the Joint ports marked "B" or
"F" (base or follower). These ports are intended for connecting to Bodies.

4 Open the JICA block’s dialog box. From the primitive list for the Joint,
choose the primitives you want to actuate by selecting their check boxes.

5 Enter the initial positions of the actuated primitives, relative to the Body
CSs attached to the Joint, in the Position field.

From the pull-down menu on the right, select Units for the initial positions.

6 Enter the initial velocities of the actuated primitives, relative to the Body
CSs attached to the Joint, in the Velocity field.

From the pull-down menu on the right, selectUnits for the initial velocities.

7 Click Apply or OK.

JICA Example: A Simple Pendulum
Open mech_spen from the Demos library, then open the Sensors & Actuators
library. Follow the steps from the preceding section, “Using JICA Blocks”
on page 1-63, to connect one Joint Initial Condition Actuator block to the
Revolute block and configure it. This Joint contains only one primitive, R1,
which is the primitive listed in the JICA dialog box.

1-64

Applying Motions and Forces

Set the initial conditions in two ways and compare the resulting simulations
in the scope:

1 First set the initial Position (angle) to 60 deg, which is 60o down from
the left horizontal (30o clockwise from vertically down), and set the initial
Velocity to 0 deg/s.

1-65

1 Modeling Mechanical Systems

2 Run the simulation for one second. Note in the scope that the initial angle
(yellow curve) is displaced upward to 60o, while the initial velocity (purple
curve) still starts at zero.

3 Now reset the initial Velocity to 30 deg/s, leaving the initial Position
(angle) at 60 deg.

4 Rerun the simulation for one second. Note in Scope that the initial angle
is still displaced upward to 60o, but the initial velocity is also displaced
upward to 30o/sec.

1-66

Applying Motions and Forces

The joint directionality is assigned in mech_spen so that the positive rotation
axis is the +z-axis. Looking from the front, positive rotation swings down
and right, counterclockwise.

1-67

1 Modeling Mechanical Systems

Sensing Motions and Forces

In this section...

“About Sensors” on page 1-68

“Sensing Body Motions” on page 1-69

“Sensing Joint Motions and Forces” on page 1-70

“Sensing Constraint Reaction Forces” on page 1-71

About Sensors
The SimMechanics Sensors & Actuators library provides a set of Sensor
blocks that enable you to measure

• Body motions

• Joint motions and forces or torques on joints

• Constraint reaction forces and torques

All Sensor output is defined with respect to a fixed, conventional “zero.” See
“Home Configuration and Position-Orientation Measurements” on page 1-68.

Tip You can feed Sensor output back into Actuator blocks to model springs,
dampers, and other mechanical devices that depend on force feedback. See
“Actuating a Body” on page 1-50, “Actuating a Joint” on page 1-56, “Adding
Internal Forces” on page 1-74, and “Validating Mechanical Models” on page
1-85.

Home Configuration and Position-Orientation Measurements
The Body and Joint Sensor blocks can measure the position and/or orientation
of bodies and degrees of freedom. They make these measurements relative
to the home configuration of the machine, the machine state before the
application of initial condition actuators and assembly of disassembled joints.
Thus motion sensors include the effect of the latter, which act before the
simulation starts.

1-68

Sensing Motions and Forces

For further discussion, see “Modeling Disassembled Joints” on page 1-34 and
“Specifying Initial Positions and Velocities” on page 1-62, and “Kinematics
and the Machine’s State of Motion”.

Sensing Body Motions
To sense the position, velocity, or acceleration of a body represented by a
Body block with a Body Sensor:

1 If the Body block does not have a spare local coordinate system with a
Body CS port, create one (see “Managing Body Coordinate Systems” on
page 1-17).

2 Drag a Body Sensor block from the Sensors & Actuators library into your
model.

3 Connect its connector port to a spare Body CS port on the Body.

4 Open the Sensor’s dialog box.

1-69

1 Modeling Mechanical Systems

5 Select the coordinate system relative to which the sensor measures its
output from the With respect to CS list.

6 Select the check boxes next to the motions that you want to sense (see the
Body Sensor block reference page).

7 If you have chosen to sense more than one type of motion and want the
Sensor to multiplex the motions into a single output signal, select the
Output selected parameters as one signal check box.

8 Click OK or Apply.

9 Connect the output of the Body Sensor block to a Simulink Scope or other
signal sink or to a motion feedback loop, depending on your needs.

Sensing Joint Motions and Forces
The Joint Sensor block enables you to measure the motions of degrees of
freedom. It can also measure the relative forces and torques between the
bodies connected to the joint. These include the computed force or torque (the
force or torque needed to reproduce the joint’s motion) and the reaction force
and torque on a joint primitive. (You cannot measure the computed force or
torque on a spherical or weld primitive.) You must connect a separate Joint
Sensor block to a Joint block for each joint primitive that you want to sense.

To sense the motions, forces, and torques of a joint primitive contained by a
Joint block:

1 If the Joint block does not have a spare Sensor port, create one (see
“Creating Actuator and Sensor Ports on a Joint” on page 1-28).

2 Drag a Joint Sensor block from the Sensors & Actuators library into your
model.

3 Connect its connector port to the spare Sensor port on the joint.

4 Use the Sensor’s dialog box to configure the Sensor to measure the motions,
forces, and torques that you want to measure (see the Joint Sensor block
reference page).

5 Connect the output of the Joint Sensor block to a Simulink Scope or other
signal sink or to a motion feedback loop, depending on your needs.

1-70

Sensing Motions and Forces

Sensing Constraint Reaction Forces
The Constraint & Driver Sensor block enables you to measure the reaction
forces and torques induced on the constraints modeled by SimMechanics
Constraint and Driver blocks.

To sense the reaction force and/or torque induced by a constraint or driver,

1 If the Constraint or Driver does not have a spare Sensor port, create one.

2 Drag a Constraint & Driver Sensor block from the Sensors & Actuators
library into your model.

3 Connect its connector port to a Sensor port on the Constraint or Driver
block.

4 Open the Sensor block’s dialog box.

5 Select the body (follower or base) on which to measure the reaction force
from the Reactions measured on list.

6 Select the coordinate system relative to which the Sensor measures its
output from theWith respect to coordinate system list.

7 Select the Reaction torque check box if you want the Sensor to output
the reaction torque on the base (or follower) body.

1-71

1 Modeling Mechanical Systems

8 Select the Reaction force check box if you want the Sensor to output the
reaction force on the base (or follower) body.

9 If you have chosen to output both reaction force and torque and want the
Sensor to multiplex them into a single output signal, select the Output
selected parameters as one signal check box.

10 Click OK or Apply. Connect the output of the Constraint & Driver Sensor
block to a Simulink Scope or other signal sink or to a motion feedback loop,
depending on your needs.

Not all the reaction force/torque components are significant. Only those
components projected into the subspace of constrained or driven degrees of
freedom (DoFs) are physical. Components orthogonal to the constrained or
driven degrees of freedom are not physical.

Example: Linear Driver
In this example, you drive a body along the x-axis, but only allow it a prismatic
DoF tilted at an angle in the x-y plane. Construct the following model.

Configure the Constraint & Driver Sensor to measure only the reaction force,
not the torque. Configure the Linear Driver to drive the Body along the World
x-axis, but set up the Prismatic with a primitive axis along (1, 2, 0). The body
can then move only along this axis, but is driven along the horizontal x-axis.
Measure all motions and forces in World. Leave all other settings at default.

1-72

Sensing Motions and Forces

Open the Scopes and run the model. The measured reaction force lies along
the x-axis, with a value of -19.62 N (newtons) = -2mg. Because the constrained
DoF is not parallel to the x-axis, you need to project the reaction force along

the unit vector (1, 2, 0)/ 5 defining the direction of the prismatic primitive
to obtain the physical part.

Add to the model the Simulink blocks that form a dot product between the
reaction force signal (three components) and the prismatic unit vector (also
three components). (You can define a workspace vector for this axis and use
it in both the joint and the dot product.) Reconnect Scope1 to measure this
physical component of the reaction force.

The physical component of the reaction force is -(19.62 N)·(1/ 5) = -8.77 N.
The component of the reaction force orthogonal to (1, 2, 0) is not physical.

1-73

1 Modeling Mechanical Systems

Adding Internal Forces

In this section...

“About Force Elements” on page 1-74

“Inserting a Linear Force Between Bodies” on page 1-74

“Inserting a Linear Force or Torque Through a Joint” on page 1-76

“Customizing Force Elements with Sensor-Actuator Feedback” on page 1-78

About Force Elements
Internal forces are forces the machine applies to itself as a result of its own
motion. Unlike actuation forces, you do not apply these forces from outside
the machine with Simulink signals. The body motions instead generate the
forces and torques directly.

The Force Elements library provides ready-made blocks to represent certain
kinds of internal forces and torques acting between bodies. You can also
create your own customized sensor-actuator feedback loops to model springs,
dampers, and more complex internal forces.

Inserting a Linear Force Between Bodies
A generalized linear force between two bodies is a linear function of the two
bodies’ relative displacement vector r and relative velocity v, with constant
coefficients. The Body Spring & Damper block models a force acting between
two bodies along the axis r connecting them:

F = -k(r - r0) - bv||

The block is connected on either side to Bodies at a Body coordinate system
(CS). The displacement r is a vector from one Body CS on one Body to the
other Body CS on the other Body. Newton’s third law requires that the forces
that the bodies exert on one another be equal and opposite.

The common physical system this force model represents is a spring-damper
combination, where the damper is a dashpot acting only along the spring
axis. The damping is solely a function of the component v|| of the velocity

1-74

Adding Internal Forces

vector projected along the displacement r. (Thus the damping in this block
cannot represent the damping due to a viscous medium, because there is no
damping force perpendicular to the spring axis. See “Inserting a Linear Force
or Torque Through a Joint” on page 1-76.)

You enter the constant parameters r0, k, and b in the Body Spring & Damper
dialog. r0 is the spring’s natural length, the length it has when no forces
are acting on it. The spring constant k and damping constant b should be
nonnegative.

To complete a linear force model between bodies, you need to model the
translational degrees of freedom (DoFs) between them, as the Force Element
block itself does not represent these DoFs. You can use any Joint block
containing at least one prismatic primitive to represent translational motion.
The two Bodies, the Joint, and the Body Spring & Damper must form a
closed loop.

The following block diagram represents two Bodies with a damped spring
between them. The Custom Joint represents the bodies’ relative translational
DoFs with three prismatic primitives. In this case, CS2 and CS3 on Body1
are the same, and CS2 and CS3 on Body2 are the same. Thus, the Joint is
connected to the same Body CSs that define the ends of the spring-damper
axis.

1-75

1 Modeling Mechanical Systems

Inserting a Linear Force or Torque Through a Joint
Another way of inserting a linear force element between two bodies is to
connect it to a joint that already connects the bodies. You have to apply the
force element, like an actuator, to each primitive in the joint individually.
This approach has several advantages over the Body Spring & Damper:

• You can create a different force law, with a different spring length, spring
constant, and damping constant, for each of the joint’s primitives.

• The spring and damper forces acting on each primitive act independently
in their respective directions, instead of depending on just the interbody
distance with a single spring length, spring constant, and damping
constant.

This allows you to create spring and damping forces that act independently
in two or three dimensions, unlike the Body Spring & Damper force, which
acts only along a single axis. Damping forces acting on multiple primitives
act as a two- and three-dimensional viscous medium, not as a dashpot.

• The joint representing the DoFs between the bodies is already present.

1-76

Adding Internal Forces

You use the Joint Spring & Damper block to implement such spring-damper
forces/torques together with a Joint. With it, you can apply a linear spring
and damper force to each prismatic primitive and a linear torsion and damper
torque to each revolute primitive in a Joint block. (You cannot apply these
torques to a spherical primitive.)

Pick a Joint already connected between two Bodies. You connect the Joint
Spring & Damper block to a Joint block at a sensor/actuator port on the Joint.
(The section “Actuating a Joint” on page 1-56 explains how to create such a
port.) The Joint Spring & Damper dialog then lists each primitive in the Joint.

For each prismatic primitive you want to actuate with a spring-damper
force, you specify a natural spring length (offset), spring constant, and
damping constant. For each revolute primitive you want to actuate with a
torsion-damper torque, you specify a natural torsion angle (offset, or angle in
which the primitive points absent any torques), torsion constant, and damping
constant. You make these specifications in the Joint Spring & Damper dialog.

Here are two bodies connected by a Custom Joint in turn connected to a Joint
Spring & Damper block.

Unlike the example in the preceding section, “Inserting a Linear Force
Between Bodies” on page 1-74, the Custom Joint can have up to three
prismatics and three revolutes, each with a separate linear force or torque
acting through it. Each force or torque acts equally and oppositely on each
body, following Newton’s third law.

1-77

1 Modeling Mechanical Systems

Customizing Force Elements with Sensor-Actuator
Feedback
You can create your own force elements acting through Joints or on Bodies
by using Sensor-Actuator feedback loops. With this technique, you can not
only model linear forces, but any force that depends on body or joint positions
and velocities.

This simple example illustrates the method with a linear spring force law.
Hooke’s law states that the force exerted by an extended spring is proportional
to its displacement from its unextended position: F = -kx.

The following SimMechanics model represents a spring that obeys Hooke’s
law.

The model uses the Gain block labeled Spring Constant to multiply the
displacement of the prismatic joint labeled Spring along the World’s y-axis by
the spring constant -0.8. The output of the Gain block is the force exerted
by the spring. The model feeds the force back into the prismatic joint via the
Actuator labeled Force. The model encapsulates the spring block diagram in a
subsystem to clarify the model and to allow a spring to be inserted elsewhere.

1-78

Combining One- and Three-Dimensional Mechanical Elements

Combining One- and Three-Dimensional Mechanical
Elements

In this section...

“About Interface Elements” on page 1-79

“Working with Interface Elements” on page 1-81

“Example: Rotational Spring-Damper with Hard Stop” on page 1-82

About Interface Elements
SimMechanics software is built on the Simscape environment, which supports
one-dimensional domains of translational and rotational motion, along or
about a single axis for one body at a time. The mechanical elements of the
Simscape Foundation library include masses, inertias, and internal forces
and torques, as well as sensors and actuators. The blocks of the Interface
Elements library allow you to selectively couple a SimMechanics machine to
a mechanical circuit.

Consult the Simscape documentation for more about Physical Networks and
one-dimensional domains.

How Mechanical Interface Elements Couple Motion and Forces
Between SimMechanics Machines and Simscape Circuits
Because Simscape models simulate motion along or about one axis, one
Interface Element block can couple only one SimMechanics joint primitive
at a time to a Simscape circuit, interfacing through a Sensor/Actuator port
on a Joint block. An Interface Element neither adds nor subtracts degrees
of freedom (DoFs) to or from the combined machine-mechanical circuit.
Its coupling is like a force element between the two domains (see “Adding
Internal Forces” on page 1-74):

• From the point of view of the SimMechanics machine, an Interface Element
behaves like a force actuator acting on the selected joint primitive. The
interface block injects force or torque from the mechanical circuit between
the Bodies connected to either side of the Joint.

1-79

1 Modeling Mechanical Systems

• From the point of view of the Simscape mechanical circuit, an Interface
Element behaves like a motion actuator. The interface block injects
translational or rotational motion from the machine into the circuit
connection line.

• The directionality or sense of motion, established by the base (B)-follower
(F) order in the SimMechanics Joint, is preserved in the Simscape
mechanical circuit.

• An Interface Element preserves the force or torque flowing through the
Interface Element into the machine and the motion acting across the Joint
transmitted into the mechanical circuit. Interface Elements thus conserve
mechanical power, transferring it without loss between the two domains.

Interface Elements can couple prismatic or revolute joint primitives to
translational or rotational motion, through the Prismatic-Translational
Interface or Revolute-Rotational Interface blocks, respectively.

Limitations on the Interfaced Simscape Mechanical Circuit
SimMechanics and Simscape mechanical simulations are separately valid.
However, simulation of moving bodies modeled as Simscape mass and inertia
elements coupled through Interface Elements to a SimMechanics machine is
not complete and requires care to avoid unphysical results. These limitations
arise from their different representations of motion and dynamics coming
into conflict:

• One-dimensional motion in Simscape circuits versus three-dimensional
motion in SimMechanics machines.

A Simscape circuit does not model the motion of such bodies along or about
axes orthogonal to the coupled primitive axis chosen in the interfaced Joint.

• Absolute motion of each Simscape mass and inertia represented by
connection lines versus relative motion, represented by Joints, between
SimMechanics bodies.

All masses in Simscape models live in an implicit inertial reference frame.
A Simscape mechanical circuit interfaced to a SimMechanics machine in
general moves in an accelerated frame. A simulation with such a circuit
does not include the pseudoforces acting on the Simscape mass and inertia
elements as experienced in such a noninertial frame and thus violates
Newton’s second law of mechanics.

1-80

Combining One- and Three-Dimensional Mechanical Elements

As the mass and/or inertia modeled in the interfaced mechanical circuit is
increased, so is the violation of Newton’s second law. As such mass and/or
inertia is decreased, so is the violation.

Warning Model all masses and inertias in your system as Bodies
in the SimMechanics machine and avoid placing mass and inertia
elements into any interfaced Simscape mechanical circuits.

Models with mass and inertia elements in Simscape mechanical
circuits interfaced to a SimMechanics machine are not physically
valid. Simulating with such models does not yield valid results.

Working with Interface Elements
To interface a Joint with a Simscape mechanical circuit:

1 Select the appropriate Interface Element block, prismatic or revolute, from
the Interface Elements library.

• If you wish to couple a translational mechanical circuit to a prismatic
primitive, select Prismatic-Translational Interface.

• If you wish to couple a rotational mechanical circuit to a revolute
primitive, select Revolute-Rotational Interface.

You cannot mix translational and rotational motion with an Interface
Element.

2 Copy the selected Interface Element block into your model.

3 Open the Joint dialog and add an extra Sensor/Actuator port. Close the
dialog.

4 Connect the Interface Element mechanical connector port to the new
Sensor/Actuator port on the Joint.

1-81

1 Modeling Mechanical Systems

5 Open the Interface Element dialog. The Connected to primitive
pull-down menu contains a list of all the primitives of appropriate type
(prismatic or revolute) in the interfaced Joint.

Select the primitive you want to interface. The Simscape circuit will move
along or about that axis. Click OK or Apply.

On the machine side, the Joint must follow the standard rules for Joints and
in particular be connected to a Body on each side. (See “Modeling Degrees of
Freedom” on page 1-19.) You should connect the Interface Element with the
rest of the mechanical circuit.

Example: Rotational Spring-Damper with Hard Stop
The mech_interface_rot_spr_damper demo illustrates proper interface of
Simscape mechanical elements with a three-dimensional SimMechanics
machine.

1-82

Combining One- and Three-Dimensional Mechanical Elements

The interfaced mechanical circuit has no inertia or mass elements, which
prevents the problems discussed in “Limitations on the Interfaced Simscape
Mechanical Circuit” on page 1-80. It contains only force elements: a rotational
spring, a rotational damper, and a rotational hard stop. Together, these
force elements create a hard stop for the Revolute block. This block contains
only one primitive, R1, which you can view by opening its dialog. Through
this primitive, the Simscape force elements act between Body A and Body
B, limiting their relative angular motion about the revolute R1 axis to ±π/6
radians.

1-83

1 Modeling Mechanical Systems

1-84

Validating Mechanical Models

Validating Mechanical Models

In this section...

“Essential Tests for Model Validity” on page 1-85

“Verifying Model Topology” on page 1-85

“Counting Model Degrees of Freedom” on page 1-89

Essential Tests for Model Validity
Simulink can simulate a SimMechanics model only if it is valid. A model is
valid if it satisfies the following rules:

• Each machine in the model contains at least one Ground, and exactly one
Ground in each machine is connected to a Machine Environment block.
Each submachine connected to a full machine by a Shared Environment
block must have at least one Ground.

See “Representing Machines with Models” on page 1-2.

• Every machine in the model is topologically valid. See “Verifying Model
Topology” on page 1-85.

• The model contains at least one degree of freedom. See “Counting Model
Degrees of Freedom” on page 1-89.

• Any machine in the model interfaced to Simscape mechanical circuits
satisfies both SimMechanics and Simscape modeling rules. See “Combining
One- and Three-Dimensional Mechanical Elements” on page 1-79.

Verifying Model Topology
To avoid simulation failures, you must ensure that the topology of your block
diagram is valid. A block diagram is topologically valid if each machine that
it contains is valid. A machine is valid if its spanning tree is valid. Thus to
determine if your model is valid, first determine the spanning tree of each
machine that it contains and then the validity of each resulting tree.

1-85

1 Modeling Mechanical Systems

Machine Topology and Subsystems
When examining your model’s topology, be sure to inspect all its subsystems,
including masked subsystems, down to the bottom of the model’s subsystem
hierarchy.

Determining a Machine’s Spanning Tree
You can think of a machine as a graph with elements (bodies) and connectors
(joints, constraints, and drivers). A spanning tree is a reduced graph with
bodies connected only by joints and all closed loops cut once.

To determine the spanning tree of a machine, remove all blocks from the
machine except Body and Joint blocks and open every closed loop in the
resulting reduced machine. To open a closed loop, follow the loop-cutting rules
in “Cutting Machine Diagram Loops” on page 1-46.

For example, here is a machine with two closed loops.

1-86

Validating Mechanical Models

Cutting the top loop at the Disassembled Prismatic and removing the Parallel
Constraint block (thus simultaneously cutting the bottom loop) yields the
machine’s spanning tree, as shown here.

Determining the Validity of a Spanning Tree
To be valid, a spanning tree must meet these requirements:

• The spanning tree must have at least one Ground block to serve as a
reference to World.

• Every Joint block must be connected to exactly two Body blocks.

• Every non-Ground Body block must have a unique path to a Ground block.
(This need not be true of the whole machine.) This ensures that, while
each body moves via joints relative to other bodies, the simulation can
resolve all bodies’ motions relative to one another into absolute motions
with respect to World.

• Every non-Ground Body block at an end of a chain of Bodies must have
nonzero inertia (mass or inertial moment) associated with all joint
primitives that can move. Each translational DoF must carry a nonzero
mass, and each rotational DoF a nonzero inertial moment. This prevents
infinite accelerations when forces and torques are applied.

1-87

1 Modeling Mechanical Systems

Examples of Invalid Machine Topologies
Here are some examples of invalid topologies:

• This one-loop machine lacks a Ground block.

• This open machine has a dangling Joint block.

1-88

Validating Mechanical Models

• Another open machine features a zero-mass body at one end of a chain of
bodies.

The last two invalid examples are dynamically (but not topologically)
equivalent, because a zero-mass body is dynamically no body at all.

Counting Model Degrees of Freedom
Identifying and counting the independent degrees of freedom (DoFs) of
a machine are important for trimming and linearizing SimMechanics
models (see “Trimming Mechanical Models” on page 3-18 and “Linearizing
Mechanical Models” on page 3-32) and for correcting simulation errors (see
“Troubleshooting Simulation Errors” on page 2-26).

Your SimMechanics model must have at least one DoF to be valid. A free
physical body has six DoFs: three translational and three rotational. But in
a machine, connections between bodies by joints, constraints, and drivers,
and motion actuation by joint and body actuators reduce the machine’s
independent DoFs to a smaller number. You also reduce a body’s DoFs if you
confine the machine’s motion to one or two spatial dimensions.

A SimMechanics Body block has no DoFs. Connecting Joints to a Body adds
DoFs to the machine. The joint primitives represent the Body’s DoFs relative
to other connected Bodies or Grounds. Connecting Constraint and Driver
blocks to Bodies or motion-actuating joint primitives in Joints removes DoFs
from the machine. A locked Joint Stiction Actuator also removes a DoF.

1-89

1 Modeling Mechanical Systems

Degrees of Freedom in Subsystems
When you examine your model to identify and count its DoFs, be sure to open
and inspect all its subsystems, including masked subsystems, to the bottom
of the model’s subsystem hierarchy.

Finding Independent Degrees of Freedom
Here is the formula for determining the number of independent DoFs your
model has:

of independent DoFs = # of body DoFs + # of primitive DoFs -
of motion restrictions

The following three steps define each term on the right side:

1 Calculate the number of body DoFs from the number of Body and Joint
blocks in your model:

of body DoFs = 6 * (number of Bodies - number of Joints)

If you have confined the machine to move in only two dimensions, replace
the 6 by 3. If you have confined the machine to move in only one dimension,
replace the 6 by 1.

2 Calculate the number of primitive DoFs by adding up the primitive DoFs
from the Joint dialog boxes:

• Count one for each prismatic (P) or revolute (R) primitive.

• Count three for each spherical (S) primitive.

• Count zero for each weld (W) primitive.

Do not count a primitive DoF that is motion-actuated by a Joint Actuator.

3 Calculate the number of motion restrictions by adding up the motion
restrictions of each Constraint and Driver block and from each locked Joint
Stiction Actuator. Different blocks from the Constraints & Drivers library
impose different numbers of motion restrictions. Stiction actuators apply to
individual joint primitives.

1-90

Validating Mechanical Models

Constraint Block Restrictions Driver Block Restrictions

Gear One Angle One

Parallel Two Distance One

Point-Curve Two Linear One

Velocity One

Be sure not to count redundant motion restrictions. These are restrictions
that forbid the motion of joint primitives that could not move anyway even
if the constraint were removed, because of how the joints are configured.

Example: A body is connected to a ground by a single prismatic. You place
a constraint on the body that prevents it from moving perpendicularly to
the prismatic axis. The body could not move in that direction even if you
removed the constraint. So the constraint is redundant, and you would
not count it as a motion restriction.

The Role of Joint Stiction Actuators
A Joint Stiction Actuator can remove or restore a DoF during a simulation. It
is the only block that can change the number of independent DoFs after you
start simulating. You must count an additional motion restriction during the
period when a stiction-actuated primitive is locked. The primitive counts as
another DoF if it is unlocked.

1-91

1 Modeling Mechanical Systems

DoF Example: Double Pendulum
The mech_dpen model from the Demos library represents planar double
pendulum motion actuated by a Joint Actuator.

The double pendulum has two rigid bodies, such as two rods, confined to move
in two dimensions. Ignoring the Joint Actuator temporarily, there are two
bodies, two joints, and two revolute primitives, and thus 3 * (2 - 2) + 2 = 2
independent DoFs. There are many ways to represent these two DoFs, but
the two revolute primitives are the simplest way.

Including the Joint Actuator in the DoF count removes the revolute primitive
in the Revolute block as an independent DoF. So this model actually only has
one independent DoF, the revolute primitive in the Revolute1 block.

DoF Example: Four Bar Mechanism
The “Modeling and Simulating a Closed-Loop Machine” example has four
revolutes. You can establish that only 3 * (3 - 4) + 4 = 1 of these DoFs is
actually independent and arrive at the same result obtained in the example.

1-92

2

RunningMechanicalModels

SimMechanics software gives you multiple ways to simulate and analyze
machine motion in the Simulink environment. Running a mechanical
simulation is similar to running a simulation of any other type of Simulink
model. It entails setting various simulation options, starting the simulation,
interpreting results, and dealing with simulation errors. See the Simulink
documentation for a general discussion of these topics. This chapter focuses
on aspects of simulation specific to SimMechanics models.

• “Configuring SimMechanics Models in Simulink” on page 2-2

• “Configuring Methods of Solution” on page 2-6

• “Starting Visualization and Simulation” on page 2-20

• “How SimMechanics Software Works” on page 2-24

• “Troubleshooting Simulation Errors” on page 2-26

• “Improving Performance” on page 2-32

• “Generating Code” on page 2-38

• “Limitations” on page 2-42

2 Running Mechanical Models

Configuring SimMechanics Models in Simulink

In this section...

“SimMechanics and Simulink Options” on page 2-2

“Distinguishing Models and Machines” on page 2-2

“Machine Settings via the Machine Environment Block” on page 2-2

“Model-Wide Settings via Simulink and Simscape Software” on page 2-3

SimMechanics and Simulink Options
Simulink provides an extensive set of simulation options that apply to
any type of model. Additional options apply specifically to simulating
SimMechanics models. This section discusses those standard Simulink
options for which mechanical models require special consideration and the
additional SimMechanics options specific to mechanical systems .

Distinguishing Models and Machines
Respecting the distinction introduced in “Representing Machines with
Models” on page 1-2, you need to make two categories of settings, one for each
machine in a model and one for the entire SimMechanics model. To configure
a mechanical model for simulation, you need to interact with two dialogs.

• “Machine Settings via the Machine Environment Block” on page 2-2 makes
use of the Machine Environment block dialog.

• “Model-Wide Settings via Simulink and Simscape Software” on page 2-3
uses the Simulink Configuration Parameters dialog.

“Configuring Methods of Solution” on page 2-6 discusses the settings in detail.

Machine Settings via the Machine Environment Block
Every machine in your model requires exactly one Machine Environment
block to be connected to one of its Ground blocks. The mechanical settings
that you enter in that Machine Environment block determine the mechanical
environment for that machine only. Other machines are controlled by their
respective Machine Environment blocks.

2-2

Configuring SimMechanics™ Models in Simulink®

This block controls the connected machine’s mechanical environment,
including simulation dynamics, machine dimensionality, gravity, tolerances,
constraints, motion analysis modes, and visualization. See the Machine
Environment reference page for a full description of the block dialog’s four
tabs.

The Machine Environment settings are also presented in the following
sections:

• “Defining Gravity” on page 2-6

• “Choosing Your Machine’s Dimensionality” on page 2-7

• “Choosing an Analysis Mode” on page 2-8

• “Controlling Machine Assembly” on page 2-12

• “Maintaining Constraints” on page 2-12

• “Handling Motion Singularities” on page 2-18

• “Setting Up Visualization” on page 2-22

Model-Wide Settings via Simulink and Simscape
Software
Mechanical and general settings for an entire model are located in the
Simulink Configuration Parameters dialog, accessed through the Simulink
Simulation menu. Every node in this dialog is relevant to controlling your
model’s simulation, including visualization. See the Simulink documentation
for more details about this dialog.

At a minimum, you need to check and possibly adjust the settings in the
Solver node and the Simscape node, with its SimMechanics subnode,
before running a mechanical model:

• The active Editing area of the Simscape node allows you to choose the
Simscape software editing mode. To change this setting, see “Using the
Simscape Editing Mode” on page 2-20.

• The SimMechanics-specific controls appear on the SimMechanics
subnode of the Simscape node. It has two active areas, Diagnostics and
Visualization.

2-3

2 Running Mechanical Models

- For more about configuring simulation diagnostics, see “Avoiding
Simulation Failures” on page 2-17.

- For more about configuring visualization, see “Setting Up Visualization”
on page 2-22.

• The choice and configuration of the solver are Simulink settings, located
on the Solver node. This node has two active areas, Simulation time
and Solver options.

- “Configuring a Simulink Solver” on page 2-16 contains the basic
information to get you started.

- To optimize solver settings for better simulation, see “Improving
Performance” on page 2-32.

- For general information about the Simulink solvers, see the Simulink
documentation.

Simulink® Configuration Parameters Dialog (Simscape™ Node Shown)

2-4

Configuring SimMechanics™ Models in Simulink®

SimMechanics Default Settings Not Changed If SimMechanics
Blocks Are Absent
If you have the SimMechanics product installed, any model you build will
display the SimMechanics subnode under the Simscape node. However, if
you then build a model that does not include any SimMechanics blocks, any
nondefault SimMechanics settings you make in the SimMechanics subnode
will not be saved in that model. Upon saving, closing, and reopening the
model, the SimMechanics settings will revert to their defaults.

2-5

2 Running Mechanical Models

Configuring Methods of Solution

In this section...

“About Mechanical and Mathematical Settings” on page 2-6

“Defining Gravity” on page 2-6

“Choosing Your Machine’s Dimensionality” on page 2-7

“Choosing an Analysis Mode” on page 2-8

“Hierarchy of Solvers and Tolerances” on page 2-11

“Controlling Machine Assembly” on page 2-12

“Maintaining Constraints” on page 2-12

“Configuring a Simulink Solver” on page 2-16

“Avoiding Simulation Failures” on page 2-17

About Mechanical and Mathematical Settings
In this section, you choose and configure the settings necessary to simulate
mechanical motion with a SimMechanics model.

To gain a better understanding of how SimMechanics software solves for
mechanical motion, see “How SimMechanics Software Works” on page 2-24
and “Improving Performance” on page 2-32.

Defining Gravity
The most basic aspect of a machine’s environment is the gravitational
acceleration it experiences. You control a machine’s gravity in the
Parameters tab of its Machine Environment dialog.

2-6

Configuring Methods of Solution

Setting a Constant Gravitational Acceleration
A uniform gravity field is applied to the motion of every machine. The default
is a constant vector of [0 -9.81 0] with units of meters/seconds2 and x-,
y-, and z-components, respectively.

You can change this value to a different constant vector by modifying the
entry in the Gravity vector field of the Parameters tab. You can change
the units by using the units pull-down menu.

Introducing Gravity as an External Simulink Signal
In addition to constant gravity, you can apply a time-varying, spatially
uniform, gravity vector through a Simulink signal. You enable this option by
selecting the Input gravity as signal check box in the Parameters tab.

Once you make this selection, the Machine Environment block acquires
a Simulink inport to accept this Simulink signal. The signal must be a
three-component vector. You can still change the units through the pull-down
menu.

Choosing Your Machine’s Dimensionality
In general, you simulate machine motion in all three spatial dimensions. If
a machine can move in only two dimensions, however, ignoring the third
dimension makes the simulation more efficient. By default, the simulation
automatically determines whether your machine moves in all three or only
two dimensions and optimizes the simulation accordingly.

You can override this default by requiring simulation in either three or
two dimensions. You choose the simulation dimension of a machine in the
Machine dimensionality pull-down menu of the Parameters tab of the
Machine Environment dialog. If you attempt to simulate a three-dimensional
machine in two dimensions, the simulation stops with an error.

Requirements for Two-Dimensional Simulation
Your machine must meet certain criteria before you can require simulation in
two dimensions:

• The prismatic primitives must define a set of parallel planes.

2-7

2 Running Mechanical Models

• The revolute primitives must rotate about axes perpendicular to the
prismatic planes.

The bodies of a two-dimensional machine do not all have to lie in a single
plane, but they should slide and rotate only in parallel planes.

Code Generated from Two-Dimensional Models
Code generated from simulations restricted to two-dimensional motion is also
restricted to two-dimensional motion. See “Restrictions on Two-Dimensional
Simulation” on page 2-44.

Blocks That Require Three-Dimensional Simulation
The SimMechanics library contains certain blocks that, if you use them in a
machine, require you to simulate in three dimensions.

• Any Joint block with more than two prismatic primitives, more than one
revolute primitive, or any spherical primitives

• Disassembled Joints

• Massless connectors

Choosing an Analysis Mode
You can analyze motion in a SimMechanics model with these analysis types.

Analysis Result Analysis Type

Motion that results from applying forces Forward dynamics

Steady-state motion Trimming

Effect of slightly perturbing the motion Linearization

Forces required to produce a specified motion Inverse dynamics

The Parameters tab of the Machine Environment dialog allows you to
choose the analysis mode you want to simulate in. You make this choice via
the Analysis mode pull-down menu. In the case of linearization, use the
Linearization tab to set the size of the small perturbations. See Chapter
3, “Analyzing Motion” for detailed instructions and examples concerning the
motion analysis modes.

2-8

Configuring Methods of Solution

By choosing one of these analysis modes, you implement the type of motion
analysis you want.

Analysis
Type

Analysis
Mode

Description

Forward
dynamics

Forward
Dynamics

Computes the positions and velocities of a system’s bodies at each
time step, given the initial positions and velocities of its bodies and
any forces applied to the system.

Linearization Forward
Dynamics

Computes the effect of small perturbations on system motion
through the Simulink linmod command.

Trimming Trimming Enables the Simulink trim command to compute steady-state
solutions of system motion.

Inverse
dynamics
(open-loop)

Inverse
Dynamics

Computes the forces required to produce a specified velocity for each
body of an open-loop system.

Inverse
dynamics
(closed-loop)

Kinematics Computes the forces required to produce a specified velocity for each
body of a closed-loop machine.

Forward Dynamics Mode
Use this mode to simulate a model that represents the initial positions and
velocities of the system’s bodies and the forces on those bodies.

Run these examples in the Forward Dynamics mode:

• “Running a Demo Model”

• “Modeling and Simulating a Simple Machine” and “Modeling and
Simulating a Closed-Loop Machine”

Consider also the many examples of Chapter 1, “Modeling Mechanical
Systems”.

Trimming Mode
Use this mode to allow you to run the Simulink trim command on your model.
The trim command allows you to find steady-state solutions for your model.

2-9

2 Running Mechanical Models

Trimming mode inserts a subsystem and an output port at the top level of
your model. These blocks output signals corresponding to the constraints on
the system represented by your model. Configure the trim command to find
equilibrium points where the constraint signals are zero. This ensures that
the equilibrium points found by the trim command satisfy the constraints on
the modeled system.

See “Trimming Mechanical Models” on page 3-18 for examples of using this
mode to find the equilibrium points of a mechanical system.

To Linearize a Machine’s Motion
You can determine the effect of small perturbations on system motion by
linearizing your machine. To linearize, set the analysis mode to Forward
Dynamics and run the Simulink linmod command on your model.

You can fix the size of the perturbation or let the simulation find an optimal
perturbation for you. Enter these settings in the Linearization tab of the
Machine Environment dialog.

See “Linearizing Mechanical Models” on page 3-32 for examples of using this
mode to find the effect of small perturbations on mechanical motion.

Inverse Dynamics Mode
Use this mode to simulate an open-loop system whose model specifies the
velocity of every degree of freedom of every body at every time step.

See “Inverse Dynamics Mode with a Double Pendulum” on page 3-8 for an
example of using this mode to find the forces on an open-loop system.

Kinematics Mode
Use this mode to simulate a closed-loop machine whose model specifies the
velocity of every independent degree of freedom at every time step. The
tolerancing constraint solver is recommended in this mode. (See “Maintaining
Constraints” on page 2-12.)

See “Kinematics Mode with a Four Bar Machine” on page 3-14 for an example
of using this mode to find the forces on a closed-loop machine.

2-10

Configuring Methods of Solution

Hierarchy of Solvers and Tolerances
Simulating your SimMechanics model is a cooperative effort between
SimMechanics software and Simulink. A SimMechanics simulation interprets
your machine’s purely mechanical aspects through machine assembly and
a constraint solver. Simulink controls the purely mathematical aspects of
the simulation through your chosen Simulink solver. Together, they try to
harmonize your choices of Simulink solver and solver tolerances, constraint
solver and solver tolerances, and assembly tolerances in this dynamic
hierarchy:

The next three sections discuss these choices in top-down order:

• “Controlling Machine Assembly” on page 2-12

• “Maintaining Constraints” on page 2-12

• “Configuring a Simulink Solver” on page 2-16

2-11

2 Running Mechanical Models

Controlling Machine Assembly
The linear and angular assembly tolerances specify the precision with which

• A model must specify the initial locations and angles of a machine’s joints.

• A simulation must solve the initial positions and angles of a machine’s
unassembled joints.

The Parameters tab of a machine’s Machine Environment dialog allows
you to change the default assembly tolerances in the Linear assembly
tolerance and Angular assembly tolerance fields. You can also adjust the
linear and angular units in the respective pull-down menus.

For more about machine assembly and assembly tolerances, see “Modeling
Degrees of Freedom” on page 1-19 and specifically, “Modeling Disassembled
Joints” on page 1-34.

How Assembly Tolerances Work
A SimMechanics simulation checks the locations and angles of a machine’s
assembled joints when it initializes the model and later in the simulation. If
any of the joint locations or angles fails to meet the corresponding assembly
tolerances, Simulink halts the simulation and displays an error message. If
this happens, you should check your machine to ensure that it specifies the
locations and angles of its assembled joints to the precision specified in the
Parameters tab. If not, either change the locations and angles that fail to
meet the assembly tolerances or increase the tolerances themselves.

Assembly tolerances can also be violated during the course of a simulation
by insufficiently accurate constraint and motion solvers. See “Maintaining
Constraints” on page 2-12 and “Configuring a Simulink Solver” on page 2-16.

Maintaining Constraints
If your model contains implicit or explicit constraints on a machine’s motion,
the SimMechanics simulation uses a constraint solver to find a solution for
the motion that satisfies those constraints.

2-12

Configuring Methods of Solution

This section describes how the constraint solvers work and what you need to
decide to make proper use of them. These constraint choices and settings for a
machine are found on theConstraints tab of its Machine Environment dialog.

The simulation imposes constraints when it initializes the model, then later
checks if the constraints remain satisfied during the simulation. If any of the
degrees of freedom (DoFs) fail to satisfy the constraint tolerances, Simulink
halts the simulation and displays an error message. If this happens, you
should either switch to a looser constraint solver or increase the constraint
tolerances (if you have manual control of the constraint tolerance).

Constraints can also be violated during the course of a simulation by an
insufficiently accurate Simulink solver. See “Configuring a Simulink Solver”
on page 2-16.

Origins of Mechanical Constraints
The need to impose constraints on a machine’s motion arises in two ways,
explicit or implicit. In either case, motion is restricted to a subspace of DoFs.

• Imposing a time-independent or time-dependent mechanical constraint on
a system’s DoFs. This requires you to insert a Constraint or Driver block
that restricts the motion represented by a Joint. See “Constraining and
Driving Degrees of Freedom” on page 1-38.

• Cutting closed loops in a SimMechanics block diagram. Each closed loop
is cut at one Joint, Constraint, or Driver block. The simulation internally
replaces the cut block with an implicit constraint equivalent to the original
closed loop. See “Cutting Machine Diagram Loops” on page 1-46.

Marking Automatically Cut Joints. Selecting the Mark automatically
cut joints check box in the SimMechanics node of your model’s
Configuration Parameters dialog causes Simulink to mark the icons of any
Joint blocks in closed loops that it cuts during simulation of the model.

By default, the check box is not selected.

2-13

2 Running Mechanical Models

Projecting the Motion on to the Constraint Manifold
The space of motion allowed to the DoFs by the constraints, or constraint
manifold K, is a subspace of the full space Q of DoFs. (Q includes both
coordinates and their velocities.) A SimMechanics simulation initializes
your model by projecting the initial state of its machines on to K. During
simulation, the constraints ensure that the motion remains on K, and
Simulink solves for the motion only in the constrained subspace.

The projection cannot be done with infinite precision, but only within the
constraint tolerance. Your constraint settings determine the method and
precision of projection.

Constraint Manifold as a Subspace of DoFs

Identifying and Eliminating Redundant Constraints
It is possible for you or the simulation to overspecify constraints. Simulation
proceeds if the extra or redundant constraints are consistent with the others,

2-14

Configuring Methods of Solution

but having redundant constraints always runs the risk of inconsistency,
which leads to the simulation halting with errors.

Several checks identify and eliminate redundant constraints, both at the
start of and during the simulation.

• You can enable a warning to indicate if a small perturbation to the model
initial state changes the number of constraints.

• You can enable a warning to indicate if your model is subject to redundant
constraints, whether they conflict or not.

• You can specify how similar constraints have to be before they are treated
as redundant, or you can let the simulation decide for you.

See “Configuring SimMechanics Simulation Diagnostics” on page 2-18 and
the Constraints tab of the Machine Environment block.

Comparing and Choosing Constraint Solvers
Each constraint solver has advantages and disadvantages relative to the
others, subject to the fundamental tradeoff of accuracy and speed.

Constraint Solver Tolerance Computational
Cost

Accuracy Simulation
Speed

Stabilizing Dynamic attractor Lowest Lowest Fastest

Tolerancing Open to your
control

Intermediate Intermediate Intermediate

Machine Precision Tolerance ~ eps Highest Highest Slowest

Stabilizing Constraint Solver
This solver adds a self-correcting term to the equations of motion that
stabilizes the solution by causing it to evolve toward, rather than drift away
from, the constraint manifold K. It is the least accurate of the constraint
solvers.

SimMechanics simulations use this solver by default. It is typically faster
than the other solvers, but it can settle into a solution that exceeds the

2-15

2 Running Mechanical Models

machine’s assembly tolerances. If assembly tolerance errors occur during the
simulation, use one of the other constraint solvers instead.

Tolerancing Constraint Solver
This solver finds the system’s motion while imposing the constraints to the
tolerance that you specify. Specifically, the solver stops refining the solution
when the difference between two successive solutions satisfies the condition

|error| < max(|rtol * x|, atol)

where error is the difference between successive solutions, rtol is the relative
constraint tolerance, x is the motion to be solved, and atol is the absolute
constraint tolerance.

Use this solver you plan to run the simulation in Kinematics mode. It is
more accurate than the stabilizing solver, but less accurate than the machine
precision solver, with a computational cost between the two.

Setting Constraint Tolerances. If you use the tolerancing solver, the
constraint tolerances maintained during simulation are under your control.
You can view and change the constraint tolerances in the Constraints tab
of the Machine Environment dialog.

Machine-Precision Constraint Solver
This solver imposes the constraints to the numerical precision of the computer
on which the simulation is running. Select this solver if you want to obtain
the most accurate simulation permitted by the computer, regardless of
simulation time or computational cost. It is the most accurate of the solvers
and typically the slowest.

Configuring a Simulink Solver
A SimMechanics model uses one of the ordinary differential equation (ODE)
solvers of Simulink to solve a system’s equations of motion, typically in
tandem with a constraint solver (see “Maintaining Constraints” on page 2-12).

Simulink provides an extensive suite of ODE solvers that represent the most
advanced numerical techniques available for solving differential equations

2-16

Configuring Methods of Solution

in general and equations of motion in particular. The Solver node of your
model’s Configuration Parameters dialog allows you to select any of these
solvers for use by Simulink in solving the model’s dynamics. See the Simulink
documentation for more details about choosing a Simulink solver.

• By default, Simulink uses a variable-step solver, whose accuracy is
controlled by setting its absolute and relative tolerances.

• You can also use a fixed-step solver, whose accuracy is controlled by setting
the time step.

See “Improving Performance” on page 2-32 for further details on variable-
versus fixed-step solvers.

Setting Simulink Solver Tolerances
By default, Simulink automatically determines the absolute tolerance used
by ODE solvers. The resulting tolerance might not be small enough for a
mechanical system, particularly a nonlinear or chaotic system. Try running
a simulation with the relative tolerance set to 1e-3 (the default) and the
absolute tolerance set to 1e-4. Then increase the tolerances if the simulation
takes too long or decrease them if the solution is not sufficiently accurate.

Solver Tolerances and Stiction
If your model contains one or more Joint Stiction Actuator blocks, you must
also take into account the velocity thresholds of these blocks when setting the
absolute tolerance of the ODE solver. If the absolute tolerance of the solver is
greater than a joint’s velocity threshold, the simulation might never detect
the locking or unlocking of a joint. To prevent this from happening, set the
absolute tolerance to be no more than 10% of the size of the smallest stiction
velocity threshold in your model.

Avoiding Simulation Failures
You can anticipate and avoid many types of simulation failure by the following
adjustments. You make them in the SimMechanics subnode of your model’s
Configuration Parameters dialog and the Constraints tab of a machine’s
Machine Environment dialog.

2-17

2 Running Mechanical Models

See “How SimMechanics Software Works” on page 2-24 and “Troubleshooting
Simulation Errors” on page 2-26 for further information about identifying and
recovering from simulation errors. See “Maintaining Constraints” on page
2-12 for more about constraints.

Configuring SimMechanics Simulation Diagnostics
Certain SimMechanics diagnostics help you understand and, if necessary,
troubleshoot simulation problems. You can adjust these diagnostics in the
Diagnostics area of the SimMechanics subnode.

Warning on Redundant Constraints. Selecting the Warn if machine
contains redundant constraints check box triggers a warning if there
are more constraints than necessary in your model. This situation by itself
does not cause simulation errors. But in certain configurations, too many
constraints might lead to conflicts and thus to errors during the course of the
simulation.

By default, the check box is selected.

Warning on Unstable Constraints in Initial State. Selecting theWarn if
number of initial constraints is unstable check box triggers a warning if
small changes to your model’s initial state leads to changes in the number of
constraints. In certain configurations, this instability can lead to too few or
too many (conflicting) constraints on your system and prevent the simulation
from finding a solution for the motion.

By default, the check box is not selected.

Handling Motion Singularities
At certain simulation times, one or more degrees of freedom in a mechanical
system might change quickly compared to the others. If these sudden, quick
motions are too fast compared to the slower motions, the Simulink solver

2-18

Configuring Methods of Solution

has difficulty finding an accurate solution in a reasonable simulation time.
Imposing constraints on the motion often exacerbates this problem. In
extreme cases, the simulation can stop with an error.

You can alleviate these motion singularities by selecting the Use robust
singularity handling on the Constraints tab of the Machine Environment
dialog. This option requires extra computation whether or not singularities
exist. Select it only if you cannot find a Simulink solver that solves your
model in a reasonable amount of time without it.

See “Maintaining Constraints” on page 2-12 and “Configuring a Simulink
Solver” on page 2-16 for more discussion of motion singularities and their
relationship to the Simulink solvers.

2-19

2 Running Mechanical Models

Starting Visualization and Simulation

In this section...

“About Simscape and Visualization Settings” on page 2-20

“Using the Simscape Editing Mode” on page 2-20

“Setting Up Visualization” on page 2-22

“Starting the Simulation” on page 2-23

About Simscape and Visualization Settings
After you have considered and adjusted SimMechanics mechanical and
mathematical settings, discussed in “Configuring Methods of Solution” on
page 2-6, you should review Simscape and visualization settings before
proceeding to simulation. Open your model’s Configuration Parameters dialog
from its Simulation menu.

Using the Simscape Editing Mode
The Simscape node of the Configuration Parameters dialog contains the
Editing area and Editing Mode pull-down menu. Select the editing mode
here, either Full or Restricted. The default is Full.

• The Full mode allows you to open, simulate, change, and save models
that contain SimMechanics blocks, without restriction. It requires the
SimMechanics product to be installed and a SimMechanics license.

• The Restricted mode allows you to open, simulate, and save models that
contain SimMechanics blocks, without requiring a SimMechanics license,
as long as the SimMechanics product is installed. In this mode, you can
also change a limited set of SimMechanics block dialog parameters.

For more information about Simscape editing modes, see the Simscape
documentation.

2-20

Starting Visualization and Simulation

Editing Block Parameters in Restricted Mode
When you open a SimMechanics model in Restricted editing mode, you cannot
change certain block parameters in the block dialogs. The general editing
rules for Restricted mode are:

• You can edit dialog fields that contain numerical values or variables.

• You cannot change pull-down menu settings.

• You cannot change check box selections.

Exceptions to the Restricted Mode Editing Rules
There are exceptions to the general block parameters editing rules in
Restricted mode.

Machine Environment Block. The Machine Environment dialog is
unrestricted in Restricted mode (including pull-down menus), except for:

• Analysis mode pull-down menu

• Input gravity as signal check box

Editing Parameter Tables in Dialogs. Certain block dialogs use tables to
organize parameter fields. You cannot edit such parameters in Restricted
mode. The block dialog components affected are:

• Body coordinate systems tabs (Position and Orientation) in the Body
dialog

• Actuation area in the Joint Initial Condition Actuator dialog

• Primitives tab in the Joint Spring & Damper dialog

• Axes tab in any Joint dialog

To work around these restrictions, place a workspace variable name (instead
of a numerical value) in these parameter fields while editing in Full mode.
Then in Restricted mode, you can change the value of the workspace variable,
although you cannot change the dialog field entry itself.

2-21

2 Running Mechanical Models

Setting Up Visualization
Above the level of individual Body blocks, configuring visualization requires
entering settings at the machine and model level. See the SimMechanics
Visualization and Import Guide for complete information about visualization.

Visualization Settings for an Entire Model
You enter the visualization settings for an entire model in the Visualization
area of the SimMechanics subnode of the Configuration Parameters dialog.
Model-wide visualization is disabled by default.

To start visualization, you must select at least one of the first two check boxes:

• Display machines after updating diagram for static visualization

• Show animation during simulation for dynamic animation

For the others settings, consult “Introducing Visualization and Animation” in
the visualization guide.

Every machine within your model inherits the model-wide body color and
geometry settings. However, you can override these defaults on a per-machine
and per-body basis.

Visualization Settings for Each Machine in a Model
You can choose whether and how to visualize a specific machine in your model
through the Visualization tab of its Machine Environment dialog. A single
window displays all selected machines in a model.

2-22

Starting Visualization and Simulation

Machine-specific visualization is enabled by default. You can override
model-wide default body geometry and color settings on each machine
individually.

Visualization Settings for Each Body in a Machine
You can choose how to visualize a specific body in a specific machine through
the Visualization tab of its Body dialog. You can override machine-wide
default body geometry and color settings on each Body individually.

Visualization Settings in the SimMechanics Visualization
Window
The SimMechanics visualization window itself contains all other visualization
controls.

Starting the Simulation
Once you configure the Simulink and SimMechanics settings to simulate a
mechanical system, you can run your model.

As the simulation proceeds, you might encounter warnings, errors, and
unexpected or unsatisfactory results. Consult these sections to learn how to
identify errors and improve your simulation.

• “How SimMechanics Software Works” on page 2-24

• “Troubleshooting Simulation Errors” on page 2-26

• “Improving Performance” on page 2-32

• “Generating Code” on page 2-38

• “Limitations” on page 2-42

2-23

2 Running Mechanical Models

How SimMechanics Software Works

In this section...

“About Machine Simulation” on page 2-24

“Model Validation” on page 2-24

“Machine Initialization” on page 2-24

“Force Analysis and Motion Integration” on page 2-25

“Stiction Mode Iteration” on page 2-25

About Machine Simulation
This brief overview of how SimMechanics simulation works should help you
to construct models and understand errors. “Troubleshooting Simulation
Errors” on page 2-26 discusses fixing errors.

The machine simulation sequence has four major phases, described below. The
first two occur before machine motion actually starts. The premotion machine
configurations (home, initial, and assembled) are discussed in “Kinematics
and the Machine’s State of Motion” and in their respective “Glossary” entries.

Model Validation
The simulation first checks your data entries from the dialogs and the local
connections among neighboring blocks. It then validates the Body coordinate
systems; the joint, constraint, and driver geometries; and the model topology.
Body positions and orientations defined purely by Body dialog entries
constitute the home configuration.

Machine Initialization
The simulation next checks the assembly tolerances of Joints that you
manually assembled.

The simulation then cuts each closed loop once. An equivalent implicit, or
invisible, constraint replaces each cut Joint, Constraint, or Driver block. The
simulation checks all constraints and drivers for mutual consistency and
eliminates redundant constraints. It also checks whether a small perturbation

2-24

How SimMechanics™ Software Works

to the initial state changes the number of constraints. Such a singularity
might lead, during machine motion, to violation of the constraints.

Any Joint Initial Condition Actuators now impose initial positions and
velocities, changing body geometries from their dialog box configurations as
necessary and transforming the machines from their home configurations to
their initial configurations. The simulation then finds an assembly solution
for disassembled joints and initializes them in position and velocity, defining
the assembled configuration. Assembly tolerances are checked again.

A “sticky” joint primitive, actuated by a Joint Stiction Actuator, can be in
one of three stiction modes: locked, waiting, or unlocked. Iterating through
non-time-increment simulation steps (algebraic loop), The simulation finds a
mutually consistent set of stiction modes for all sticky joints.

Force Analysis and Motion Integration
In Forward Dynamics or Trimming analysis mode, the simulation begins
the solution of machine motion by applying and integrating external forces
and torques, stepping in simulation time. It maintains assembly, constraint,
and solver tolerances and checks constraint and driver consistency. It also
detects whether, within each Joint block, distinct joint primitive axes align
and destroy one or more independent DoFs. Such an event is a joint axis
singularity.

In Inverse Dynamics and Kinematics modes, the simulation now applies
motion constraints, drivers, and actuators to find the machine motion and
derive forces and torques. It also checks tolerances and consistency and
detects singular alignment of joint primitives.

Stiction Mode Iteration
If stiction is present, the simulation checks at each time step whether the
sticky joints transition from one stiction mode to another, then checks for
mutual consistency of locked and unlocked sticky joint primitives across the
whole model. Non-time-increment simulation steps (algebraic loops) are
necessary here.

2-25

2 Running Mechanical Models

Troubleshooting Simulation Errors

In this section...

“About Simulation Errors” on page 2-26

“Data Validation Errors” on page 2-26

“Ground and Body Geometry Errors” on page 2-27

“Joint Geometry Errors” on page 2-27

“Block Connection and Topology Errors” on page 2-28

“Motion Inconsistency and Singularity Errors” on page 2-28

“Analysis Mode Errors” on page 2-31

About Simulation Errors
SimMechanics simulations can stop before completion with one or more
error messages. This section discusses generic error types, and most errors
and error-fixing strategies fall into broad categories. These groupings are
reflected in the keywords occurring in the error messages. These sections
summarize these groupings.

The previous sections, “Configuring Methods of Solution” on page 2-6
and “How SimMechanics Software Works” on page 2-24, should be useful
for identifying and tracing errors. Many common errors also appear in
“Representing Machines with Models” on page 1-2 and “Validating Mechanical
Models” on page 1-85.

“Improving Performance” on page 2-32 discusses strategies that can prevent
errors.

Data Validation Errors
Every numerical entry you make in a SimMechanics model must be a real
numerical expression or MATLAB® equivalent. Spatial vectors are 3-vectors,
such as [3 4 5]. Spatial tensors are 3-by-3 matrices, such as rotation
matrices and the inertia tensor.

2-26

Troubleshooting Simulation Errors

Tip You can specify a two-dimensional curve in the Point-Curve Constraint
block with 2-vectors.

Ground and Body Geometry Errors
Every machine must have a least one Ground block. Every Body block must
have at least one Body CS, defined at the body’s center of gravity (CG). You
must directly or indirectly define the Body coordinate systems (CSs) of a
machine relative to a Ground or to World. You cannot enter cyclic (circular)
Body CS definitions. The Body CS definitions must separately satisfy these
criteria in the Position and Orientation tabs of the Body dialog.

For example, defining CS3 relative to CS2, defining CS2 relative to CS1,
then defining CS1 relative to CS3, results in a definition that is both cyclic
and missing any reference to a Ground or World. You can break the cycle by
referencing CS1 to a Ground or to World.

To be displayed in visualization, a Body must be connected to at least one
Joint that is connected to the rest of the machine. You cannot visualize with
equivalent ellipsoids a body whose principal inertial moments do not satisfy
the triangle inequalities. (See “About Body Color and Geometry: Default,
Standard, and Custom”.)

Joint Geometry Errors
The geometric configuration of joints, constraints, and drivers can conflict
with assembly requirements and restrictions on certain blocks.

Assembly Tolerances Violated
Assembled joints must satisfy assembly tolerances on their connected Body
CSs at all times. Disassembled joints assembled at model initialization must
also satisfy assembly tolerances during the simulation. (See “Controlling
Machine Assembly” on page 2-12.)

2-27

2 Running Mechanical Models

Zero Massless Connector Distance
The initial distance between two Body CS origins connected by a massless
connector must be nonzero. The massless connector holds the distance
between two Body CS origins constant during motion.

Composite Joints: Restrictions Among Primitives
Certain composite Joint blocks place restrictions on their primitive joint axes.
For example, Bearing must have its prismatic axis P1 aligned to its third
revolute axis R3.

Block Connection and Topology Errors
General rules on how to connect SimMechanics blocks are discussed in
Chapter 1, “Modeling Mechanical Systems”. In particular, consult these
sections of that chapter:

• “Representing Machines with Models” on page 1-2

• “Validating Mechanical Models” on page 1-85

Some restrictions are properties of individual blocks, as explained in their
reference pages. See the SimMechanics block reference.

Motion Inconsistency and Singularity Errors
Inconsistencies in motion arise from misapplication of constraints, drivers,
and actuators, from conflicting stiction requirements, and incorrect simulation
dimensionality.

Motion simulation errors often occur because of singularities or dividing by
very small numbers. Simulink solvers can integrate certain singularities,
at a cost. Others, like loss of a degree of freedom (DoF), can be fatal. See
“Maintaining Constraints” on page 2-12, “Configuring a Simulink Solver”
on page 2-16, and “Smoothing Motion Singularities” on page 2-34 and the
Machine Environment block reference.

Zero Masses and Moments of Inertia
A body moving on a prismatic axis must have nonzero mass if you actuate
it with forces. A body rotating about a revolute axis or pivoting about a

2-28

Troubleshooting Simulation Errors

spherical must have nonzero inertial moments about the axis or pivot if you
actuate it with torques. If you want a massless rigid body, consider using a
Massless Connector from the Joints/Massless Connectors sublibrary.

Note You can use point bodies (nonzero mass but zero moments) in
SimMechanics models, if the connected revolute axes and spherical pivots are
dislocated from the body. Although the moments are zero about a point body’s
CG, the displacement of the body from the axis or pivot shifts the moments
from zero to nonzero values.

Alignment of Primitives — Coincidence of Identical Bodies
Within a single Joint block, two distinct prismatic axes or two distinct
revolute axes should never align during the simulation. If either occurs, a
translational or rotational DoF is lost, and the simulation cannot determine
the subsequent motion. An example of such singularities is “gimbal lock.”
Two of the three revolute primitive axes in the Gimbal block become parallel,
reducing the number of independent DoFs in the Joint from three to two.

Two or more physically identical bodies (having the same masses and inertia
tensors) should never coincide in space.

No Degrees of Freedom
Your machine cannot move if it has no degrees of freedom. Each Constraint,
Driver, and motion-actuating Actuator block you add to a machine reduces
the number of independent DoFs. (See “Counting Model Degrees of Freedom”
on page 1-89.) Cure such errors by removing one or more of these blocks from
your machine, until you have at least one independent DoF.

Incorrect Machine Dimensionality
You cannot run a three-dimensional machine with a simulation restricted to
two dimensions. See “Choosing Your Machine’s Dimensionality” on page 2-7.

Redundant Constraints
Some constraints can restrict what another constraint is already restricting.
If redundant constraints are present and in conflict, fix these errors by

2-29

2 Running Mechanical Models

identifying and removing the redundancies. If the simulation misidentifies
one or more redundant constraints, adjust the redundant constraint tolerance.
See “Maintaining Constraints” on page 2-12.

Violated Constraints
Some machine motions or simulations might not be able to maintain assembly
tolerances at a particular simulation step while simultaneously satisfying
the constraints. One or more joints might become disassembled. Any one
of these conditions leads to errors.

You can correct this situation in several ways. First, identify the joint,
constraint, or driver causing the error and examine its physical configuration
when the error occurs to isolate the conflict. Then try any combination of
these steps:

• Decrease the Simulink solver tolerances or the step size.

• Switch to a more robust Simulink solver.

• Decrease the constraint solver tolerances.

• Increase the redundant constraint tolerance.

• Switch to the machine precision constraint solver.

• Increase the assembly tolerances.

See “Maintaining Constraints” on page 2-12 and “Configuring a Simulink
Solver” on page 2-16.

Conflicting Actuators
You cannot put more than one actuator on a joint primitive.

Exceptions You can simultaneously place an initial condition actuator and a
force/torque actuator on a joint primitive.

The Joint Stiction Actuator block does accept an input signal for nonfrictional
forces/torques, which the block adds to the stiction.

2-30

Troubleshooting Simulation Errors

Sticky Joints in Conflict
If your machine has two or more stiction-actuated (“sticky”) joints, a conflict
among them can put the simulation into an infinite loop and prevent
determination of the machine motion. Or one locked joint can prevent the
other joints, sticky or not, from moving. The machine stops moving.

For example, one sticky joint becomes unlocked and requires the other to lock,
which then requires the first to lock.

Remove these conflicts by removing one or more stiction actuators or by
changing the Joint Stiction Actuator locking thresholds.

Analysis Mode Errors
Certain restrictions apply to the analysis modes presented in “Choosing an
Analysis Mode” on page 2-8. Consult individual analysis modes for more:

• “Finding Forces from Motions” on page 3-7

• “Trimming Mechanical Models” on page 3-18

• “Linearizing Mechanical Models” on page 3-32

2-31

2 Running Mechanical Models

Improving Performance

In this section...

“Optimizing Mechanical and Mathematical Settings” on page 2-32

“Simplifying the Degrees of Freedom” on page 2-32

“Adjusting Constraint Tolerances” on page 2-34

“Smoothing Motion Singularities” on page 2-34

“Changing the Simulink Solver and Tolerances” on page 2-35

“Adjusting the Time Step in Real-Time Simulation” on page 2-36

Optimizing Mechanical and Mathematical Settings
SimMechanics software is a general-purpose mechanical simulator. With
it, you can model and simulate many types of machines with very different
behaviors. In some cases, the settings you use for “well-behaved” machines
are not optimal for more-difficult-to-simulate systems. Simulink and
SimMechanics software give you great freedom to change the mechanical
and mathematical settings used in your simulations. Use this flexibility to
avoid simulation errors and optimize performance, subject to the fundamental
tradeoff between speed and accuracy. This section explains techniques for
achieving these goals.

Also consult

• “Configuring Methods of Solution” on page 2-6 and “Troubleshooting
Simulation Errors” on page 2-26 to learn about simulation settings and
correcting and avoiding simulation failures

• “Generating Code” on page 2-38 to learn about speeding up simulations by
generating and compiling code from your models

Simplifying the Degrees of Freedom
In general, the more degrees of freedom (DoFs) you add to your model, the
slower the simulation.

2-32

Improving Performance

Eliminating Unnecessary Degrees of Freedom
Under certain circumstances, a model can contain DoFs not practically
necessary to predict system behavior. For example, a subsystem might
contain very light masses whose motion is almost completely determined by
the heavier masses in the system and that have almost no inverse influence
on the larger system.

Consider freezing or eliminating such degrees of freedom from your model
in order to speed up the simulation.

Freezing “Fast” and “Slow” Degrees of Freedom
A related distinction can be made between DoFs that change rapidly and
those that change slowly. Such systems are “stiff” (literally, in the case of a
stiff spring that oscillates at a very high frequency) and often hard to simulate
accurately in a reasonable time.

One approach to improving the speed is to selectively freeze certain DoFs.

1 Freeze or eliminate the “fast” DoFs and simulate only the “slow” DoFs.

2 Freeze the “slow” DoFs in some representative configuration and simulate
the motion of only the “fast” DoFs.

Such a split simulation between “fast” and “slow” DoFs can isolate important
features of the system behavior, while ignoring unimportant features.

Caution Splitting DoFs between “fast” and “slow” sets and simulating the
two sets separately neglects coupling between the two sets of DoFs. Only a
full simulation can capture such coupling.

See “Solving Stiff Systems” on page 2-35 for a different approach to handling
speed mismatches among DoFs.

Removing Stiction Actuators
Stiction requires computationally expensive algebraic loops. If possible,
remove Joint Stiction Actuator blocks from your model to speed it up.

2-33

2 Running Mechanical Models

Simulating in Two Dimensions
If your machine moves in only two dimensions, not three, it qualifies for the
SimMechanics two-dimensional simulation option. By reducing the linear and
rotational directions from three to two and three to one, respectively, this
option can noticeably improve simulation performance.

See “Choosing Your Machine’s Dimensionality” on page 2-7.

Adjusting Constraint Tolerances
Maintaining constraints on a system’s DoFs is a major and computationally
expensive part of a simulation. If your simulation seems to run slowly or
stops with constraint errors, especially when the mechanism passes through
certain configurations, consider relaxing the constraint tolerances and/or
solver. This step generally speeds up the simulation, although it also makes
the simulation less accurate. Decreasing the tolerances increases the accuracy
of the simulation but can increase the time required to simulate the model.

To view and change these settings in your machine, see “Maintaining
Constraints” on page 2-12 and the Machine Environment block reference.

Smoothing Motion Singularities
Singularities in a system’s equations of motion can dramatically slow down
a standard Simulink solver or even prevent it from finding a solution to
a system’s equations of motion. Because mechanical motion can become
singular, you have the option of robust singularity handling, which works
together with your selected solver to solve singular equations of motions
efficiently. This feature allows Simulink in many cases to simulate models
that otherwise cannot run or cannot be solved in a reasonable time. To enable
robust singularity handling, see “Avoiding Simulation Failures” on page 2-17.

Exact singularities are recoverable if they form isolated configurations
that can be avoided by perturbing the initial state or “stepping over” them
during simulation. In that case, the neighborhood of the exact singularity is
quasi-singular and appropriate for robust singularity handling. If the machine
has a whole neighborhood of continuously related singular configurations,
motion in that neighborhood cannot be simulated. For examples of typical
singularities, see “Motion Inconsistency and Singularity Errors” on page 2-28.

2-34

Improving Performance

Avoiding Singular Initial Configurations
Avoid starting a machine in a singular configuration. Its subsequent motion
violates assembly tolerances, as the simulation incorrectly removes one or
more necessary constraints. Common singular configurations include these:

• The machine can move in two or three dimensions, but starts in exactly
one or two dimensions, respectively.

• Two or more identical bodies spatially coincide in position and orientation.

Work around an initial singularity by slightly misaligning the singular joint
axes or slightly displacing the coincident bodies, within assembly tolerances,
before starting the simulation.

The SimMechanics node of the Configuration Parameters dialog allows you
to enable simulation warnings for possible singular initial configurations. See
“Avoiding Simulation Failures” on page 2-17.

Changing the Simulink Solver and Tolerances
The Dormand-Prince solver (ode45) that Simulink uses by default works
well for many mechanical systems. But if your simulation seems to be slow
and/or inaccurate you should consider changing the solver and/or adjusting
the solver’s relative and absolute tolerances. Chaotic and highly nonlinear
systems especially require experimentation with different solvers and
tolerances to obtain optimal results.

Consult the Simulink documentation for more about choosing Simulink
solvers and tolerances.

Solving Stiff Systems
The default Simulink solver typically requires too much time to solve systems
that are stiff, that is, have bodies moving at widely differing speeds or have
many discontinuities in their motions. An example of a stiff system is a pair
of coupled oscillators in which one body is much lighter than the other and
hence oscillates much more rapidly. Any of the Simulink stiff solvers might
require significantly less time to solve a stiff system.

2-35

2 Running Mechanical Models

See the Simulink documentation on solvers and simulation for more about
stiff solvers.

Real-Time Simulation and Ignoring Motion Details with
Fixed-Step Solvers
For most mechanical systems, variable time-step solvers are preferable. Fixed
time-step solvers, depending on the size of the time step, often fail to resolve
certain motion details.

Using a fixed-step solver can be advantageous in some cases, however:

• If you want to ignore unimportant motion details. Ignoring them can speed
up your simulation, especially for a larger time step.

• If you are simulating in real time with generated code. Fixed-step solvers
are typically, but not exclusively, the norm for real-time simulation.

For such cases, choose one of Simulink’s fixed-step solvers and select the
largest time step that produces reasonable simulation results.

Most of Simulink’s fixed-step solvers are explicit. For stiff systems and larger
time steps, an implicit solver such as the ode14x fixed-step solver can be
superior to an explicit solver in speed and accuracy.

Adjusting the Time Step in Real-Time Simulation
A real-time simulation using code generated and compiled from your model
must keep up with the actual mechanical motion. To this end, you must
ensure that the solver time step is greater than the computation time needed
by your compiled model.

To meet this condition, you might have to increase the time step or decrease
the computation time. Increasing the time step often requires removing the
model’s “fast” DoFs. Decreasing the computation time requires simplifying
your model. You can do this most easily by removing DoFs and/or constraints.
See “Simplifying the Degrees of Freedom” on page 2-32.

2-36

Improving Performance

Reference

[1] Moler, C. B., Numerical Computing with MATLAB, Philadelphia, Society
for Industrial and Applied Mathematics, 2004, Chapter 7.

2-37

2 Running Mechanical Models

Generating Code

In this section...

“About Code Generation from SimMechanics Models” on page 2-38

“Using Code-Related Products and Features” on page 2-38

“How SimMechanics Code Generation Differs from Simulink” on page 2-39

“Using Run-Time Parameters in Generated Code” on page 2-40

About Code Generation from SimMechanics Models
You can use SimMechanics software with Real-Time Workshop® to generate
stand-alone C code from your mechanical models and enhance simulation
speed and portability. Certain features of Simulink also make use of
generated or external code. This section explains code-related tasks you can
perform with your SimMechanics models.

Generated code versions of SimMechanics models typically require fixed-step
Simulink solvers, which are discussed in “Improving Performance” on page
2-32. Some SimMechanics features are restricted when you generate code
from a model. See “Limitations” on page 2-42.

Note Code generated from SimMechanics models is intended for rapid
prototyping and hardware-in-the-loop applications. It is not intended for
generating production code in embedded controller applications.

SimMechanics software shares most of the same code generation features as
Simscape software. This section describes code generation features specific
to SimMechanics software. Consult the Simscape documentation for general
information on code generation and Physical Modeling.

Using Code-Related Products and Features
With Simulink, Real-Time Workshop, and xPC Target™ software, using
several code-related technologies, you can link existing code to your models
and generate code versions of your models.

2-38

Generating Code

Code-Related Task Component or Feature

Link existing code written in C
or other supported languages to
Simulink models

Simulink S-functions to generate
customized blocks

Speed up Simulink simulations Accelerator mode
Rapid Accelerator mode

Generate stand-alone fixed-step
code from Simulink models

Real-Time Workshop software

Generate stand-alone
variable-step code from Simulink
models

Real-Time Workshop Rapid Simulation
Target (RSIM)

Convert Simulink models to code
and run them on a target PC

Real-Time Workshop and xPC Target
software

Generate blocks representing a
Simulink models or subsystems

S-function Target*

Generate code for designated
models or subsystems

Model Reference Accelerator Mode

* S-function Target is supported with SimMechanics models or subsystems,
but not with Simscape software. Converting a SimMechanics subsystem to an
S-function block allows you to run a model with Simulink alone.

How SimMechanics Code Generation Differs from
Simulink
In general, using the code generated from SimMechanics models is similar
to using code generated from Simscape and normal Simulink models. The
Simscape documentation discusses the differences between code generation in
Simulink and in Simscape.

Limited Set of SimMechanics Tunable Parameters
The major difference between Simscape and SimMechanics code generation
is that a few SimMechanics blocks do support a limited set of tunable
parameters. Consult “Using Run-Time Parameters in Generated Code” on

2-39

2 Running Mechanical Models

page 2-40 and “Most Tunable Parameters Not Supported by SimMechanics
Software” on page 2-43 following, as well as the SimMechanics block reference.

Using Run-Time Parameters in Generated Code
When SimMechanics software generates code for a model, it creates a
set of code source and header files. This set includes modelname.c and
modelname_data.c, containing all the model’s run-time parameters. In
addition, SimMechanics software generates two files that contain data
structures and function prototypes for the SimMechanics blocks alone.

The modelname.c file contains all the run-time parameters used in the
compiled simulation. modelname_data.c and the two special SimMechanics
files are auxiliaries to aid in locating and changing the run-time data.

Changing Run-Time Parameters
As with code generated from any Simulink model without parameter inlining,
you can change any run-time parameters by modifying their values in the
block parameters data structure implemented in modelname_data.c. In this
data structure, however, SimMechanics block parameters are not associated
with their original blocks. Rather, SimMechanics block parameters are
grouped together into a single vector associated with the first SimMechanics
S-function for each machine in the model.

The data structures and functions found in the special SimMechanics files,
rt_mechanism_data.h and rt_mechanism_data.c, allow you to modify
SimMechanics block parameters in generated code. The special header file
contains a data structure, MachineParameters_modelname_uniqueid, for
each machine in the model, that includes a field for each block run-time
parameter. To modify mechanical run-time parameters,

1 Use the function
rt_vector_to_machine_parameters_modelname_uniqueid in
the special code source file to create an instance of the machine
parameters data structure from the vectorized parameters associated
with the SimMechanics S-function.

2 Make the necessary modifications to the values in the data structure
instance.

2-40

Generating Code

3 Use rt_machine_parameters_to_vector_modelname_uniqueid to
reconstruct the vectorized parameters from the data structure instance.

4 Recompile your generated code.

Example: Changing a Block Parameter
This code listing is an example of a simple function that updates the mass of
the first body in the demo mech_dpen. The argument p should be a pointer
to the parameter vector associated with the SimMechanics S-function. The
argument mass is the new mass for the first body. You should call this
function before model initialization.

void update_mech_dpen_parameters(real_T *p, real_T mass)
{

MachineParameters_mech_dpen_752c07b6 ds;
/*
* convert parameter vector into data structure
*/

rt_vector_to_machine_parameters_mech_dpen_752c07b6(p, &ds);
/*
* change the mass of the first body in the double pendulum
*/

ds.Body.Mass = mass;

/*
* convert the data structure back to the parameter vector
*/

rt_machine_parameters_to_vector_mech_dpen_752c07b6(&ds, p);
}

2-41

2 Running Mechanical Models

Limitations

In this section...

“About SimMechanics and Simulink Limitations” on page 2-42

“Continuous Sample Times Required” on page 2-42

“Restricted Simulink Tools” on page 2-42

“Unsupported Simulink Tool” on page 2-43

“Simulink Tools Not Compatible with SimMechanics Blocks” on page 2-43

“Restrictions on Two-Dimensional Simulation” on page 2-44

“Restrictions with Generated Code” on page 2-44

About SimMechanics and Simulink Limitations
Some Simulink features and tools either do not work with models containing
SimMechanics blocks or work only with restrictions. Others work with
SimMechanics models but only on the normal Simulink blocks in those models.

Continuous Sample Times Required
The sample times of all SimMechanics blocks are always continuous, and you
cannot use them with discrete solvers. You also cannot override the sample
time of a nonvirtual subsystem containing SimMechanics blocks.

Restricted Simulink Tools
Certain Simulink tools are restricted in use with SimMechanics software.

• A SimMechanics model with closed loops cannot be linearized with the
Simulink linmod2 command.

• Enabled subsystems can contain SimMechanics blocks. But you should
always set the States when enabling parameter in the Enable dialog to
held for the subsystem’s Enable port.

Setting States when enabling to reset is not supported and can lead
to simulation errors.

2-42

Limitations

• Simulink configurable subsystems work with SimMechanics blocks only if
all of the block choices have consistent port signatures.

• For Iterator, Function-Call, Triggered, and While Iterator nonvirtual
subsystems cannot contain SimMechanics blocks.

• An atomic subsystem with a user-specified (noninherited) sample time
cannot contain SimMechanics blocks.

• SimMechanics software supports external mode, but without visualization.

• SimMechanics software supports Simulink model referencing, with these
restrictions:

- A SimMechanics model can be referenced only once by another model.

- SimMechanics software does not support reparameterization in a
referencing block.

- A SimMechanics machine cannot be visualized if it is referenced.

Unsupported Simulink Tool
The Simulink Profiler does not work with SimMechanics models.

Simulink Tools Not Compatible with SimMechanics
Blocks
Some Simulink tools and features do not work with SimMechanics blocks:

• Execution order tags do not appear on SimMechanics blocks.

• SimMechanics blocks do not invoke optional callbacks that you define.

• You cannot set breakpoints on SimMechanics blocks.

• Reusable subsystems cannot contain SimMechanics blocks.

• You cannot use the Simulink Fixed-Point Tool with SimMechanics blocks.

• The Report Generator reports SimMechanics block properties incompletely.

Most Tunable Parameters Not Supported by SimMechanics
Software
You cannot tune most SimMechanics block parameters during simulation.

2-43

2 Running Mechanical Models

The exceptions that you can tune are:

• The Gravity vector field of the Machine Environment block.

• All three fields under Parameters in the Body Spring & Damper block.

Restrictions on Two-Dimensional Simulation
Certain blocks are not supported in two-dimensional simulation mode. These
include disassembled joints, massless connectors, and joints that can move in
three dimensions. See “Choosing Your Machine’s Dimensionality” on page 2-7.

Restrictions with Generated Code
Code generated from models containing SimMechanics blocks has certain
limitations.

Stiction-Related Algebraic Loops Disabled
Stiction implemented with Joint Stiction Actuator blocks requires algebraic
loops iterated at a single time step to detect discrete events. In generated code
versions of models with stiction, the mode iteration to determine joint locking
and unlocking instead occurs over multiple time steps, possibly reducing
simulation accuracy.

Closed-Loop Limitations
Closed-loop models in certain analysis mode configurations use nonlinear
solvers with no upper limit on iterations. Code generated from such models is
valid but, in general, not truly “real time.” These configurations include:

• Forward Dynamics mode when Constraint solver type in the Machine
Environment block is set to Machine Precision or Tolerancing

• Kinematics mode

Restrictions on Code Generated from Two-Dimensional
Machines
If you generate code from a model containing one or more machines simulated
in two dimensions, the generated code is also restricted to two-dimensional
motion. Thus, if you change run-time parameters in the generated code, you

2-44

Limitations

must ensure that the new values do not violate the two-dimensional motion
restriction.

The choice of machine dimensionality is either automatic or manual, but
this restriction on generated code applies in either case. See “Choosing Your
Machine’s Dimensionality” on page 2-7.

Restriction on S-Functions Generated from SimMechanics
You cannot generate code from a SimMechanics model that itself contains one
or more S-functions generated from other SimMechanics models.

2-45

2 Running Mechanical Models

2-46

3

Analyzing Motion

SimMechanics analysis modes allow you to study machine motion beyond the
simple forward dynamics integration of forces. This chapter explains how to
specify machine motion, then deduce the necessary forces and torques, with
the Inverse Dynamics and Kinematic analysis modes. You can also specify a
machine steady state and analyze perturbations about any machine trajectory
by trimming and linearizing your model, respectively.

• “Dynamics of Mechanical Systems” on page 3-2

• “Finding Forces from Motions” on page 3-7

• “Trimming Mechanical Models” on page 3-18

• “Linearizing Mechanical Models” on page 3-32

Chapter 4, “Motion, Control, and Real-Time Simulation” covers more
sophisticated motion analysis and control design techniques applied to more
complex systems.

3 Analyzing Motion

Dynamics of Mechanical Systems

In this section...

“About Machine Dynamics” on page 3-2

“Forward and Inverse Dynamics” on page 3-3

“Forces, Torques, and Accelerations” on page 3-4

About Machine Dynamics
As explained in “Representing Motion”, kinematics describes the motion of
bodies, while dynamics explains the motion in terms of forces and torques. By
Newton’s laws of motion, the accelerations of the bodies’ positions are directly
related to the forces and torques applied to the bodies.

You can predict accelerations if you are given the applied forces/torques, or
relate known accelerations to the forces/torques that cause them, as this
section explains. The section concludes by presenting Newton’s laws of
dynamics for translational and rotational motion.

The books of Goldstein [1] and José and Saletan [5] present rigid body
mechanics in great detail.

About the SimMechanics™ Machine State To perform inverse dynamics,
trimming, and linearization tasks, you might need to look at and manipulate
the mechanical state of your SimMechanics machine or model.

• The machine state components arise from individual joint primitives in
your machine’s Joint blocks.

• These components represent relative degrees of freedom between one body
and another or between a body and ground.

See the mech_stateVectorMgr command reference for more information
about constructing and interpreting the machine state.

3-2

Dynamics of Mechanical Systems

Forward and Inverse Dynamics
Dynamical equations such as Newton’s laws of motion relate cause and effect.
In mechanics, the cause is a set of forces and torques applied to the bodies
of a mechanical system; the effect is the set of resulting motions. Dynamical
equations allow you to analyze motion in either direction:

• In forward dynamics, you apply a given set of forces/torques to the
bodies to produce accelerations. SimMechanics simulation integrates the
accelerations twice to yield the velocities and positions as functions of time.

A set of initial conditions is needed to specify the initial positions and
velocities and produce a complete solution for the motion. Initial conditions
must be checked for consistency with constraints.

• Inverse dynamics starts with given motions as functions of time and
differentiates them twice to yield the forces and torques needed to produce
the given motions. The given motion functions of time must be checked for
consistency with constraints.

You can use SimMechanics analysis modes to analyze mechanical motion in
both cases. The mode you choose can depend on the topology of your system.

Analysis Mode Type of Analysis

Forward Dynamics Forward dynamics (any topology)

Trimming Forward dynamics (steady-state motion)

Inverse Dynamics Inverse dynamics (open topology)

Kinematics Inverse dynamics (closed topology)

Applying the Motion Modes
For more about motion modes, see these other sections.

• “Simulating and Analyzing Mechanical Motion” is an overview of the
SimMechanics analysis modes.

• “Choosing an Analysis Mode” on page 2-8 contains detailed steps to
implement these modes in your model.

3-3

3 Analyzing Motion

• The case study “Finding Forces from Motions” on page 3-7 applies inverse
dynamics to SimMechanics models.

Forces, Torques, and Accelerations
Newton’s second law of motion relates the force on a body, its mass, and
the acceleration it experiences as a result of that force. The equivalents for
rotational motion are the Euler equations.

Newton’s Equations for Translational Dynamics
Let FA be the net force acting on a body A that has a constant mass mA and a
center of gravity (CG) position xA. Newton’s second law, valid for an inertial
observer, relates the force on A to the translational acceleration of its CG.

F
x

A A
Am

d

dt
=

2

2

Equivalently, the linear momentum pA = mAvA relates to force as FA = dpA/dt.

In forward dynamics, the force FA is given and the motion xA(t) is found
by integration, supplemented by initial position and velocity. In inverse
dynamics, the motion xA(t) is given and the force on the body is found. In
both cases, the mass must be known.

Euler’s Equations for Rotational Dynamics
Rotational motion requires a pivot, the fixed center of rotation, and the
angular velocity vector ω with respect to that pivot. If r is the position, with
respect to the pivot, of any point in a body, the velocity v of that point is v
= ω X r.

The equivalent of the mass of a body in rotational dynamics is the inertia
tensor I, a 3-by-3 matrix.

I dV r rij ij i j
V

= −⎡
⎣⎢

⎤
⎦⎥ ()∫ δ ρr r2

3-4

Dynamics of Mechanical Systems

The body’s mass density ρ(r) is a function of r within the body’s volume V.
The indices i, j range over 1, 2, 3, or x, y, z. Thus

I dV y z I dV xyxx
V

xy
V

= +⎡
⎣

⎤
⎦ = −[]∫ ∫ , 2 2 ρ ρ() , ()r r etc.

The angular momentum of a body is L = I·ω. The equivalent of the force on a
body in rotational dynamics is the torque τ, which is produced by a force F
acting on the body at a point r as τ = r X F.

The analog to Newton’s second law for rotational motion, as measured by an
inertial observer, just equates the torque τA applied to a body A, defined with
respect to a given pivot, to the time rate of change of LA. That is, τA = dLA/dt.
It is easiest to take the pivot as the origin of an inertial coordinate system
such as World. Unlike the case of translational motion, however, where the
mass mA remains constant as the body moves, the inertia tensor IA changes as
the body rotates, if it is measured in an inertial frame. There is no simple way
to relate dLA/dt to the angular acceleration dω/dt.

The common solution to this difficulty is to work in the body’s own rotating
frame, where the inertia tensor is constant, and take the body’s CG as
the pivot. Diagonalize the inertia tensor. Since I is real and symmetric,
its eigenvalues (I1, I2, I3) (the principal moments of inertia) are real. Its
eigenvectors form a new orthogonal triad, the principal axes of the body. But
this frame fixed in the body is not inertial, and the torque-angular acceleration
relationship is modified from its inertial form into the Euler equations:

I I I

I I I

I I I

1 1 2 3 2 3 1

2 2 3 1 3 1 2

3 3 1 2 1 2

�

�

�

ω ω ω τ

ω ω ω τ

ω ω ω

− −() =

− −() =

− −() = ττ3

The components of the rotational vectors here are projected along the
principal axes that move with the body’s rotation.

Linearizing the Dynamical Equations
To study a system’s response to and stability against external changes,
you can apply small perturbations in the motion or the forces/torques to a

3-5

3 Analyzing Motion

known trajectory and force/torque set. SimMechanics software and Simulink
provide analysis modes and functions for analyzing the results of perturbing
mechanical motion. The later sections of this chapter, demonstrate their use:

• “Trimming Mechanical Models” on page 3-18

• “Linearizing Mechanical Models” on page 3-32

You can perturb Newton’s and Euler’s laws with a small additional force
ΔF and torque Δτ and determine the associated perturbations in motion, Δx
and Δω. You can also perturb the system inversely, making small changes
to the motion and determining the forces and torques necessary to create
those changes.

The perturbed Newton’s and Euler’s equations are

F x= ⋅ ()m d dt2 2Δ

and

I I I

I I
1 1 2 3 2 3 2 3 1

2 2 3 1 3 1 3

Δ Δ Δ Δ

Δ Δ Δ

�

�

ω ω ω ω ω τ

ω ω ω ω ω

− ⋅ + ⋅() −() =

− ⋅ + ⋅() − II

I I I
1 2

3 3 1 2 1 2 1 2 3

() =

− ⋅ + ⋅() −() =

Δ

Δ Δ Δ Δ

τ

ω ω ω ω ω τ�

The vector components of the Euler’s equations are projected along the body’s
moving principal axes.

Linearizing the Constraints
If your model has constraints, you must perturb them as well:

g t
g g

x x
x

x
x

x, , , �
�

�() = ∂
∂

⋅ + ∂
∂

⋅ =0 0Δ Δ

3-6

Finding Forces from Motions

Finding Forces from Motions

In this section...

“About Inverse Dynamics in SimMechanics Software” on page 3-7

“Inverse Dynamics Mode with a Double Pendulum” on page 3-8

“Kinematics Mode with a Four Bar Machine” on page 3-14

About Inverse Dynamics in SimMechanics Software
The SimMechanics Kinematics and Inverse Dynamics modes enable you to
find all the forces on a closed-loop machine or an open machine, respectively,
given a model that completely specifies the system’s motions. (See “Choosing
an Analysis Mode” on page 2-8.)

You can use the Forward Dynamics mode to analyze inverse dynamics, but
these two alternative modes are more efficient: unlike Forward Dynamics
mode, they do not need to compute the positions, velocities, and accelerations
of the model’s components, because the model specifies them. Consequently,
Kinematics and Inverse Dynamics modes take less time than Forward
Dynamics to compute the forces on a system. The time saving depends on the
size and complexity of the system being simulated.

The following sections show how to use the Inverse Dynamics and Kinematics
modes to find the forces on the joints of an open- and closed-topology system,
respectively.

Building Kinematic Models
To use these modes, you must first build a kinematic model of the system,
one that specifies completely the positions, velocities, and accelerations
of the system’s bodies. You create a kinematic model by interconnecting
blocks representing the bodies and joints of the system and then connecting
actuators to the joints to specify the motions of the bodies.

Actuating Independent Degrees of Freedom
A model does not have to actuate every joint to specify completely the motions
of a system. In fact, the model need actuate only as many joints as there

3-7

3 Analyzing Motion

are independent degrees of freedom in the system. (See “Counting Model
Degrees of Freedom” on page 1-89.) For example, a model of a four bar
mechanism need actuate only one of the mechanism’s joints, because a four
bar mechanism has only one degree of freedom. To avoid overconstraining the
model’s solution, the number of actuated joints should not exceed the number
of independent degrees of freedom.

Warning Attempting to simulate an overconstrained model causes
Simulink to stop the simulation with an error.

Inverse Dynamics Mode with a Double Pendulum

Caution The Inverse Dynamics mode works only on open topologies and
requires motion-actuating every independent DoF (see “Counting Model
Degrees of Freedom” on page 1-89).

Consider a double pendulum consisting of two thin rods each 1 meter long
and weighing 1 kilogram. The upper rod is initially rotated 15 degrees from
the perpendicular.

Suppose that you want the pendulum to follow a certain trajectory. How
much torque is required to make the pendulum follow this prescribed motion?

3-8

Finding Forces from Motions

Solving this problem entails building a kinematic model of the moving
pendulum.

• The model must represent the geometry of the double pendulum and
specify its motion trajectory throughout the simulation.

• The model must also measure the computed torque on each joint, the torque
necessary to reproduce the specified motion.

Except in simple cases, you can find these computed torques only as
approximate functions of time.

The kinematic model can take different approaches to specifying the initial
state of the pendulum.

• One approach uses Body block parameters to specify the initial states.

• Another approach uses Actuator block signals.

Using Body Blocks to Specify Initial Conditions
Open the model mech_dpend_invdyn1. It illustrates the Body block approach
to modeling initial states.

3-9

3 Analyzing Motion

This model represents the pendulum by two Body blocks and two Revolute
Joint blocks.

• The CS1 axis of the upper body (B1) of the pendulum is rotated 15 degrees
from the perpendicular (see annotation for block B1).

• The coordinate systems for the lower block (B2) are aligned with CS1 of the
upper block. The CS1 of B2 is rotated -15 degrees relative to CS1 of B1, i.e.,
it is perpendicular to the World coordinate system.

Using Actuator Blocks to Specify the Initial States
Open the model mech_dpend_invdyn2. It shows the use of Joint Actuator
blocks to specify the initial kinematic state. Using actuators to specify the
displacement slightly simplifies the configuration of the Body blocks.

3-10

Finding Forces from Motions

Specifying the Motion and Measuring the Computed Torques
In either model, the Joint Actuator blocks connected to the Joint blocks specify
that the upper and lower joints accelerate at two distinct rates, 2 and -1
degrees/second2, respectively. Sensor blocks connected to To Workspace blocks
measure the computed torques on the upper and lower joints as MATLAB
workspace variables torque_upper and torque_lower, respectively. These
vectors capture the upper and lower computed torques at each major time
step. You must simulate either model in Inverse Dynamics mode to compute
the joint torques required to maintain the pendulum in its motion.

3-11

3 Analyzing Motion

Using the Computed Torques in Forward Dynamics
Once you know the computed torques as functions of time, you can verify that
these are the correct answers by creating a version of the model that applies
the computed torques to the joints and simulating that model in Forward
Dynamics mode.

Open the model mech_dpend_act. It illustrates a forward dynamics version of
the kinematic model that uses the joint actuators to specify the initial angular
displacement of the pendulum bodies.

This model uses Initial Condition blocks to specify the initial 15 degree
displacement of the upper body from the vertical in the world coordinate
system and the corresponding initial -15 degree displacement of the lower

3-12

Finding Forces from Motions

body from the vertical in the coordinate system of the upper body. The
negative displacement of the lower body is equivalent to positioning it as
vertical in the world coordinate system.

From a MAT-file, the model loads the upper and lower torques,
torque_lower_fcn and torque_upper_fcn, as two matrices representing
discrete functions of time. Simulating this model in Forward Dynamics mode
results in the following display on the upper joint scope.

If the computed torques were known exactly as continuous functions of time
in the two inverse dynamics models, this plot would exactly match the upper
joint motion in the original models. But the torques are measured only in a
discrete approximation, and mech_dpend_act does not exactly reproduce the
original motion.

Making More Accurate Torque Measurements
You can achieve better approximations by adjusting Simulink to report sensor
outputs in the original models with finer time steps. Refer to the Simulink
documentation for more about exporting simulation data and refining output.

3-13

3 Analyzing Motion

Kinematics Mode with a Four Bar Machine

Caution The Kinematics mode works only on closed topologies and requires
motion-actuating every independent DoF (see “Counting Model Degrees
of Freedom” on page 1-89).

Also, there must be no Joint Stiction Actuators and no nonholonomic
constraints.

Consider the four bar system illustrated by the tutorial titled “Modeling and
Simulating a Closed-Loop Machine”. The model is mech_four_bar.

Suppose that you want to keep this system from collapsing under its own
weight. Because the four bar has only one degree of freedom, applying a
counterclockwise torque to the joint labeled Revolute1 would accomplish this
objective. But how much torque is sufficient?

To answer this question, you must build a kinematic model of the stationary
four bar system, starting with the tutorial model. The kinematic model must

3-14

Finding Forces from Motions

specify how the system moves over time. In this case, the four bar remains
stationary. You can use a Joint Actuator to implement this requirement.

Transforming Forward into Inverse Dynamics
Open the model mech_four_bar_kin, derived from mech_four_bar.

• The model uses a Joint Actuator block driven by a Constant block to
specify the motion on the Revolute1 joint. The Constant block outputs
a three-element vector that specifies the angular position, velocity, and
acceleration, respectively, of the joint as 0.

• The model uses a Joint Sensor block connected to a Scope block to display
the resulting torque on the joint and a To Workspace block to save the
torque signal to the MATLAB workspace.

3-15

3 Analyzing Motion

Finding and Checking the Needed Torque
Now obtain and verify the inverse dynamics solution to the question.

1 Run this model in Kinematics mode. The output reveals that the torque on
the Revolute1 joint is 27.9 newton-meters, to the precision of the assembly
tolerances specified in the Machine Environment block.

2 To verify that the computed torque is, indeed, the torque required to keep
the system stationary, create a forward-dynamics model that applies the
computed torque to the Revolute1 joint. Open such a model contained in
mech_four_bar_stat.

3 Run the model in Forward Dynamics mode, with the Revolute1 Angle
Scope open.

3-16

Finding Forces from Motions

The Scope display reveals that the machine does, indeed, remain
stationary, although only for about 0.4 seconds. The derived computed force
is not exact, and the model is begins nonlinear oscillations after this period.

Tip You can reduce the inaccuracy of the derived computed force by rerunning
the mech_four_bar_kin model with more restricted solver, assembly, and
constraint tolerances. For the highest accuracy (at greater computational
cost), consider shifting to the machine precision constraint solver. See
“Configuring Methods of Solution” on page 2-6.

3-17

3 Analyzing Motion

Trimming Mechanical Models

In this section...

“About Trimming in SimMechanics Software” on page 3-18

“Unconstrained Trimming of a Spring-Loaded Double Pendulum” on page
3-20

“Constrained Trimming of a Four Bar Machine” on page 3-26

About Trimming in SimMechanics Software
Trimming a mechanical system refers to the finding of solutions for inputs,
outputs, states, and state derivatives satisfying conditions that you specify
beforehand. For example, you can seek steady-state solutions where some or
all of the derivatives of a system’s states are zero. To use the Simulink trim
command on a system represented by a SimMechanics model, you must select
the SimMechanics Trimming mode (see “Choosing an Analysis Mode” on page
2-8). You must also specify the conditions that the solution must satisfy. The
examples following then show you how to trim mechanical models.

Consult the Simulink documentation for more on trimming models. You can
also enter help trim at the MATLAB command line.

Restrictions on Trimming Mechanical Models
You should avoid using certain SimMechanics or Simulink features when
trimming a model.

• A trimmed SimMechanics mechanism must be assembled. Do not use
disassembled joints while trimming.

For more information, see “Modeling Disassembled Joints” on page 1-34.

• You cannot use Driver blocks while trimming a model.

• Joint Initial Condition Actuator blocks in a trimmed SimMechanics model
are ignored.

• Do not incorporate events or motion discontinuities in your trimmed model.
In particular, do not use SimMechanics Joint Stiction Actuator blocks.
Trimming mechanical models with stiction causes an error.

3-18

Trimming Mechanical Models

Trimming in the Presence of Motion Actuation
If you want to trim a SimMechanics model containing motion actuators, you
must

1 Make the velocity and position/angle parts of the motion actuation signal
dependent only on the acceleration signal

2 Make the velocity and position/angle consistent with the acceleration
part by use of Integrator blocks. A motion actuation signal is a vector
with components ordered as position/angle, velocity, and acceleration,
respectively.

This technique is recommended in “Stabilizing Numerical Derivatives in
Actuator Signals” on page 1-49. It is required here.

SimMechanics Trimming mode uses only the acceleration as an independent
motion actuation input because it is equivalent to a force or torque. As a
consequence, only the acceleration signal can be used as an independent
motion actuation input.

A similar restriction holds for model linearization; see “Linearizing in the
Presence of Motion Actuation” on page 3-33.

Motion Actuation as a Model Input for Trimming

Motion Actuation as an Indirect Input. You can put your model input port
in another part of your model, then feed that input as an acceleration into a
motion actuator with a Simulink signal line. You must still derive the velocity
and position/angle motion actuation signals in the same way: by integrating
whatever signal you use for acceleration once and twice, respectively.

3-19

3 Analyzing Motion

Unconstrained Trimming of a Spring-Loaded Double
Pendulum
Consider the following spring-loaded double pendulum.

The joint connecting the upper and lower arms of this pendulum contains
a torsional spring and damper system that exerts a counterclockwise
torque linearly dependent on the angular displacement and velocity of
the joint. Suppose that the lower arm is folded upward almost vertically
and then allowed to fall under the force of gravity. At what point does the
spring-damper system reach equilibrium. That is, at what point does it
cease to unfold?

Making an Initial Equilibrium Guess
To find an equilibrium point for the spring-loaded double pendulum,

3-20

Trimming Mechanical Models

1 Build a SimMechanics model of the system. This diagram shows an
example of such a model, mech_dpend_trim.

• This model uses Body blocks to model the upper and lower arms of
the pendulum and a Revolute Joint block (J1) to model the connection
between the pendulum and ground.

• The model uses a Subsystem block (J2) to model the spring-loaded
revolute joint between the arms. This subsystem uses a negative
feedback loop to model a joint subject to a damped torsional spring
by multiplying the angular displacement and velocity of the joint,
respectively, by spring and damper constants. The loop sums the

3-21

3 Analyzing Motion

resulting torques and feeds them back into the joint with a Joint
Actuator block.

The result is that the joint experiences a torque opposing its motion and
proportional to its angular displacement and velocity. You could also model
this damped torsional spring with a Joint Spring & Damper block.

The spring and damper constants used here were chosen by running the
model with various candidate values and choosing the ones that resulted in
a moderate deflection of the pendulum.

2 Run the model in Forward Dynamics mode to estimate an initial guess for
the nontrivial equilibrium point of the pendulum.

3-22

Trimming Mechanical Models

The simulation reveals that the spring stops unfolding after about 9
seconds; that is, it reaches a steady-state point. At this point the angles
of the upper and lower joints are about -18 and -51 degrees, respectively,
and the velocities are zero. The trim command can find the values of these
states precisely.

Analyzing and Initializing the State Vector
Examine the model’s state vector and prepare it for use in trimming.

1 Determine the layout of the model’s state vector, in order to tell the trim
command where in the model’s state space to start its search for the
pendulum’s equilibrium point (the point where it stops unfolding). Use
the SimMechanics mech_stateVectorMgr command to perform this task.
Refer to the Ground block, G.

StateManager = mech_stateVectorMgr('mech_dpend_trim/G');
StateManager.StateNames

ans =
'mech_dpend_trim/J2/RevoluteJoint:R1:Position'
'mech_dpend_trim/J1:R1:Position'
'mech_dpend_trim/J2/RevoluteJoint:R1:Velocity'
'mech_dpend_trim/J1:R1:Velocity'

The StateNames field of the state vector object returned by
mech_stateVectorMgr lists the names of the model’s states in the order in
which they appear in the model’s state vector. Thus the field reveals that
the model’s state vector has the following structure:

x(1) = position of lower joint (J2)
x(2) = position of upper joint (J1)
x(3) = velocity of lower joint (J2)
x(4) = velocity of upper joint (J1)

2 Determine an initial state vector.

The initial state vector specifies the point in a system’s state space where
the trim command starts its search for an equilibrium point. The trim
command searches the state space outward from the starting point,
returning the first equilibrium point that it encounters. Thus, the starting

3-23

3 Analyzing Motion

point should not be at or near any of a system’s trivial equilibrium points.
For the double pendulum, the point [0; 0; 0; 0] (i.e., the pendulum initially
folded up and stationary) is a trivial equilibrium point and therefore should
be avoided. The initial state vector must be a column vector and must
specify angular states in radians.

Often, the choice of a good starting point can be found only by experiment,
that is, by running the trim command repeatedly from different starting
points to find a nontrivial equilibrium point. This is true of the double
pendulum of this example. Experiment reveals that this starting point,

ix(1) = J2 (lower joint) angle = -35 degrees = -0.6109 radians
ix(2) = J1 (upper joint) angle = -10 degrees = -0.1745 radians
ix(3) = J2 angular velocity = 0 radians/second
ix(4) = J1 angular velocity = 0 radians/second

yields a nontrivial equilibrium point.

Caution The trim command ignores initial states specified by Joint
Initial Condition Actuator blocks. Thus, you cannot use these blocks to
specify the starting point for trimming a model. If your model contains IC
blocks, create the initial state vector as if the IC blocks did not exist.

Trimming the System to Equilibrium

1 Reset the analysis type to Trimming on the Parameters tab of the Machine
Environment dialog.

This option inserts a constraint subsystem and associated output at the
top level of the model. Trimming inserts the constraint output to make
the constraints available to the trim command. The spring-loaded double
pendulum has no constraints. Hence the constraint outport does not output
nontrivial constraint data and is not needed to trim the pendulum.

3-24

Trimming Mechanical Models

2 Enter the following commands to find the equilibrium point nearest to
the starting point.

ix = [-35*pi/180; -10*pi/180; 0; 0];
iu = [];
[x,u,y,dx] = trim('mech_dpend_trim',ix,iu);

The array ix specifies the starting point determined in “Analyzing and
Initializing the State Vector” on page 3-23. The array iu specifies the initial
inputs of the system. Its value is null because the system has no inputs.
(Thus the u and y outputs are null.) In this form, the trim command finds
a system’s steady-state (equilibrium) points, i.e., the points where the
system’s state derivatives are zero. The array x contains the state vector
corresponding to the first equilibrium point located by trim:

x =
-0.8882
-0.3165
-0.0000
0.0000

The resulting states are angular positions and velocities expressed in
radians. Based on the layout of the model’s state vector (determined

3-25

3 Analyzing Motion

previously in “Analyzing and Using the State Vector” on page 3-27) the
pendulum reaches equilibrium when its upper joint has deflected to an
angle of -18.1341 degrees and its lower joint to an angle of -50.8901 degrees.
The system state derivatives dx are zero, within tolerances.

Constrained Trimming of a Four Bar Machine
Consider a planar four bar system consisting of a crank, a coupler, and a
rocker. The following figure shows a block diagram and a convex hull display
of the four bar system. The model is mech_four_bar_trim.

This system is constrained by virtue of being a closed loop. Not all the degrees
of freedom are independent. (In fact, only one is.) Suppose you want to find
the torque required to turn the crank at an angular velocity of 1 radian/second
over a range of crank angles. This section outlines the procedure with the trim
command and the SimMechanics Trimming mode to determine the torque.

Setting Up the Four Bar for Trimming
Reconfigure the model before performing the trim.

3-26

Trimming Mechanical Models

1 Cut the closed loop that represents the four bar system at the joint
(Revolute1) connecting the rocker to ground (see “Modeling Grounds and
Bodies” on page 1-9).

Manually cutting the rocker joint ensures that the simulation does not
cut the four bar loop at the crank joint and thereby eliminate the crank’s
position and velocity from the system’s state vector.

For instructions and additional information on cutting joints, see “Cutting
Machine Diagram Loops” on page 1-46 and “Maintaining Constraints”
on page 2-12.

2 Select Signal Dimensions from the Format > Port/Signal Displays
menu.

Simulink then displays the width of signals on the model diagram and
hence enables you to read the number of constraints on the four bar system
from the diagram in the next step.

3 Set the analysis mode to Trimming in the Machine Environment block.

Trimming mode then inserts a subsystem and an output block that outputs
a signal representing the mechanical constraints on the four bar system.
These constraints arise from the closure of the loop.

The width of the constraint signal (4) reflects the fact that the four bar
system is constrained to move in a plane and thus has only four constraints:
two position constraints and two velocity constraints.

Analyzing and Using the State Vector
Examine the state vector and prepare it for use in trimming.

1 Reveal the layout of the system’s state vector with mech_stateVectorMgr:

3-27

3 Analyzing Motion

Handle = get_param('mech_four_bar_trim/Revolute2','handle');
StateManager = mech_stateVectorMgr(Handle);
StateManager.StateNames

ans =
'mech_four_bar_trim/Revolute2:R1:Position'
'mech_four_bar_trim/Revolute3:R1:Position'
'mech_four_bar_trim/Revolute4:R1:Position'
'mech_four_bar_trim/Revolute2:R1:Velocity'
'mech_four_bar_trim/Revolute3:R1:Velocity'
'mech_four_bar_trim/Revolute4:R1:Velocity'

2 Specify the initial state vector x0 and the index array ix:

x0 = [0;0;0;0;0;1];
ix = [3;6];

The array x0 specifies that the trim command should start its search for a
solution with the four bar system in its initial position and with the crank
moving at an angular velocity (state 6) of 1 radian/second. The array
ix specifies that the angular position (state 3) and velocity (state 6) of
the crank must equal their initial values, 0 radians and 1 radian/second,
respectively, at the equilibrium point. It is not necessary to constrain the
other states because the four bar system has only one independent position
DoF and only one independent velocity DoF.

3 Specify zero as the initial estimate for the crank torque:

u0 = 0;

4 Require the constraint outputs to be 0:

y0 = [0;0;0;0];
iy = [1;2;3;4];

The y0 array specifies the initial values of the constraint outputs as zero.
The iy array specifies that the constraint outputs at the solution point
must equal their initial values (0). This ensures that the solution satisfies
the mechanical constraints on the system.

5 Specify the state derivatives to be trimmed:

3-28

Trimming Mechanical Models

dx0 = [0;0;1;0;0;0];
idx = [6];

The dx0 array specifies the initial derivatives of the four bar system’s
states. In particular, it specifies that the initial derivative of the crank
angle (i.e., the crank angle velocity) is 1 radian/second and all the other
derivatives (i.e., velocities and accelerations) are 0. The idx array specifies
that the acceleration of the crank at the solution point must be 0; i.e.,
the crank must be moving at a constant velocity. It is not necessary to
constrain the accelerations of the other states because the system has only
one velocity DoF.

Note The four bar system has only constraint outputs. If you were trimming
a system with nonconstraint outputs, you would have to include the
nonconstraint outputs in the initial output vector.

The four bar system also has only mechanical states. If you were trimming a
system with nonmechanical Simulink states, you would have to also include
those nonmechanical states in the initial state vector.

Trimming the Four Bar
Carry out the trimming and study the output.

1 Trim the system at the initial crank angle to verify that you have correctly
set up the trim operation:

[x,u,y,dx] = ...
trim('mech_four_bar_trim',x0,u0,y0,ix,[],iy,dx0,idx);

Trim the system over a range of angles.

Angle = [];
Input = [];
State = [];
dAngle = 2*pi/10;
Constraint = [];

for i=1:11;

3-29

3 Analyzing Motion

x0(3) = (i-1)*dAngle;
x0(6) = 1;
[x,u,y,dx] = ...

trim('mech_four_bar_trim',x0,u0,y0,ix,[],iy,dx0,idx);
disp(['Iteration: ', num2str(i), ' completed.']);
Angle(i) = x0(3);
Input(:,i) = u;
State(:,i) = x;
Constraint(:,i) = y;
if (i>3),

u0 = spline(Angle,Input,Angle(end) + dAngle);
x0 = spline(Angle,State,Angle(end) + dAngle);

else
x0 = x;
u0 = u;

end; end;

2 Plot the results.

figure(1);
plot(Angle,Input);
grid;
xlabel('Angle (rad)');
ylabel('Torque (N-m)');
title('Input torque vs crank angle');

The following figure shows the resulting plot.

3-30

Trimming Mechanical Models

For More Information About Trimming Closed-Loop Machines
The following section, “Linearizing Mechanical Models” on page 3-32 contains
an example, “Closed-Loop Linearization: Four Bar Machine” on page 3-40,
of trimming the system in a different way, searching for the stable natural
equilibrium of the four bar mechanism.

3-31

3 Analyzing Motion

Linearizing Mechanical Models

In this section...

“About Linearization and SimMechanics Software” on page 3-32

“Open-Topology Linearization: Double Pendulum” on page 3-34

“Closed-Loop Linearization: Four Bar Machine” on page 3-40

About Linearization and SimMechanics Software
The Simulink linmod command creates linear time-invariant (LTI)
state-space models from Simulink models. It linearizes each block separately.
You can use this command to generate an LTI state-space model from a
SimMechanics model, for example, to serve as input to Control System
Toolbox™ commands that generate controller models. The linmod command
allows you to specify the point in state space about which it linearizes the
model (the operating point). You should choose a point where your model is in
equilibrium, i.e., where the net force on the model is zero. You can use the
Simulink trim command to find a suitable operating point (see “Trimming
Mechanical Models” on page 3-18). By default, linmod uses an adaptive
perturbation method to linearize model. The Machine Environment dialog
allows you to require that linmod use a fixed perturbation method instead
(see “Choosing an Analysis Mode” on page 2-8). The examples then following
illustrate the use of linmod to linearize SimMechanics models.

Consult the Simulink documentation for more on “Linearizing Models”. You
can also enter help linmod at the MATLAB command line.

Restrictions on Linearizing Mechanical Models
There are restrictions on how you linearize mechanical models.

• If you specify any joint primitive initial conditions with Joint Initial
Condition Actuator blocks, these initial condition values always override
any state vector initial values specified via the linmod command.

Joint primitives with JICA blocks are preferentially chosen for the set of
independent states in linearization.

3-32

http://www.mathworks.com/products/control/
http://www.mathworks.com/products/control/

Linearizing Mechanical Models

• Avoid incorporating discrete events or motion discontinuities in a linearized
model. If you include event- or discontinuity-triggering blocks, ensure
that the machine does not induce discontinuities as it moves through the
linearized regime you are modeling.

Use of Joint Stiction Actuator blocks in a linearized model causes an error.

• Because closed loops impose constraints on states, you cannot linearize a
closed-loop SimMechanics model with the linmod2 command.

Linearizing in the Presence of Motion Actuation
SimMechanics linearization uses only the acceleration as an independent
motion actuation input because it is equivalent to a force or torque. A similar
restriction holds for model trimming; see “Trimming in the Presence of Motion
Actuation” on page 3-19. As a consequence, the only motion actuation signal
that can be set as a model input is the acceleration signal.

If you want to linearize a SimMechanics model containing motion actuators,
you must

1 Make the velocity and position/angle parts of the motion actuation signal
dependent only on the acceleration signal

2 Make the velocity and position/angle consistent with the acceleration
part by use of Integrator blocks. A motion actuation signal is a vector
with components ordered as position/angle, velocity, and acceleration,
respectively.

This technique is recommended in “Stabilizing Numerical Derivatives in
Actuator Signals” on page 1-49. It is required here.

SimMechanics linearization uses only the acceleration as an independent
motion actuation input because it is equivalent to a force or torque. As a
consequence, only the acceleration signal can be used as an independent
motion actuation input.

A similar restriction holds for model trimming; see “Trimming in the Presence
of Motion Actuation” on page 3-19.

3-33

3 Analyzing Motion

Motion Actuation as a Model Input for Linearization

Linearizing in the Presence of Motion Actuation. You can put your
model input port in another part of your model, then feed that input as an
acceleration into a motion actuator with a Simulink signal line. You must still
derive the velocity and position/angle motion actuation signals in the same
way: by integrating whatever signal you use for acceleration once and twice,
respectively.

Open-Topology Linearization: Double Pendulum
Consider a double pendulum initially hanging straight up and down.

The net force on the pendulum is zero in this configuration. The pendulum is
thus in equilibrium.

3-34

Linearizing Mechanical Models

Open the mech_dpend_forw model.

Linearizing the Model
To linearize this model, enter

[A B C D] = linmod('mech_dpend_forw');

at the MATLAB command line. This form of the linmod command linearizes
the model about the model’s initial state.

3-35

3 Analyzing Motion

Note Joint initial conditions specified with IC blocks always override any
state vector initial values passed to the linmod command.

The double pendulum model in this example contains no IC blocks. The initial
conditions specified with the linmod command are therefore implemented
without modification.

Deriving the Linearized State Space Model
The matrices A, B, C, D returned by the linmod command correspond to the
standard mathematical representation of an LTI state-space model:

d dtx x u
y x u

= ⋅ + ⋅
= ⋅ + ⋅

A B
C D

where x is the model’s state vector, y is its outputs, and u is its inputs. The
double pendulum model has no inputs or outputs. Consequently, only A is not
null. This reduces the state-space model for the double pendulum to

d dtx x= ⋅A

where

A =
0 0 1.0000 0
0 0 0 1.0000

-137.3400 39.2400 0 0
39.2400 -19.6200 0 0

This model specifies the relationship between the state derivatives and the
states of the double pendulum. The state vector of the LTI model has the same
format as the state vector of the SimMechanics model. The SimMechanics
mech_stateVectorMgr command gives the format of the state vector as
follows:

StateManager = mech_stateVectorMgr('mech_dpend_forw/G');
StateManager.StateNames

3-36

Linearizing Mechanical Models

ans =
'mech_dpend_forw/J2:R1:Position'
'mech_dpend_forw/J1:R1:Position'
'mech_dpend_forw/J2:R1:Velocity'
'mech_dpend_forw/J1:R1:Velocity'

Right-multiplying A by the state vector x yields the differential state
equations corresponding to the LTI model of the double pendulum,

��

��

1 1 2

2 1 2

19 62 39 24

39 24 137 34

= − ⋅ + ⋅

= + ⋅ − ⋅

. .

. .

where

1

2

=
=

position of top joint (J1)
position of bottom joint (JJ2)

The array of coefficients on the right-hand side of the differential equations
represents a matrix of squared frequencies. The eigenvalues of this matrix
are the negative squared frequencies of the system’s response modes. These
modes characterize how the double pendulum responds to small perturbations
in the vicinity of the operating point, which here is the force-free equilibrium.

3-37

3 Analyzing Motion

The following Simulink model implements the state-space model represented
by these equations.

3-38

Linearizing Mechanical Models

Modeling the Linearization Error
This model in turn allows creation of a model located in mech_dpend_lin that
computes the LTI approximation error.

Running the model twice with the upper joint deflected 2 degrees and 5
degrees, respectively, shows an increase in error as the initial state of the
system strays from the pendulum’s equilibrium position and as time elapses.
This is the expected behavior of a linear state-space approximation.

3-39

3 Analyzing Motion

Closed-Loop Linearization: Four Bar Machine

Control System Toolbox™ Function This section uses the Control System
Toolbox function minreal. Refer to the Control System Toolbox User’s Guide
for more about this function and state-space analysis.

Linearizing a closed-loop machine is more complex than open-topology
analysis. Each closed loop in the machine imposes implicit constraints that
render some of the degrees of freedom (DoFs) dependent. Linearization of
such a system must recognize that not all the DoFs are independent. A
straightforward implementation of the linmod command results in redundant
system states. You can eliminate these with the minreal function, which
finds the minimal state space needed to represent your linearized model. To
ensure that minreal produces a nonnull state space, you must linearize a
closed-loop machine with at least one input u and one output y.

mech_four_bar_lin illustrates this reduction of independent DoFs: of the
four revolute joints, only one is an independent DoF, which can be taken as
any one of the revolutes. This model defines workspace variables in order to
configure the initial geometry of lengths and angles (expressed in the model in
meters and radians, respectively). Run the model in Forward Dynamics mode.

3-40

http://www.mathworks.com/products/control/
http://www.mathworks.com/products/control/
http://www.mathworks.com/access/helpdesk/help/toolbox/control/control.shtml
http://www.mathworks.com/access/helpdesk/help/toolbox/control/ref/minreal.shtml

Linearizing Mechanical Models

Consider a strategy to linearize the model about the four bar’s (stable) natural
equilibrium. You first find the natural equilibrium configuration, which is
best accomplished by analyzing the loop constraints, making a guess, and
then using the trim command to determine the equilibrium exactly. After
choosing a system input and output, you then linearize the system.

“Modeling, Simulating, and Visualizing Simple Machines” presents this
system in detail, in the section “Modeling and Simulating a Closed-Loop
Machine”. The preceding sections of this chapter, “Inverse Dynamics Mode
with a Double Pendulum” on page 3-8 and “Constrained Trimming of a Four
Bar Machine” on page 3-26, discuss the inverse dynamics and trimming of
the four bar system.

Analyzing the Four Bar Geometry and Closed-Loop Constraint
You can determine the constraints and independent DoFs of the four bar with
geometric and trigonometric identities applied to its quadrilateral shape. The
lengths of the bars are l1, l2, and l3, with the fixed base having length l4.

3-41

3 Analyzing Motion

The four joint angles satisfy α + β + γ + δ = 2π. Imagine cutting the
quadrilateral diagonally from the α to the γ vertices, then from the β to the
δ vertices. The law of cosines applied to these diagonals and the triangles
so formed results in two constraints:

l1
2 + l2

2 - 2l1l2cosγ = l3
2 + l4

2 - 2l3l4cosα

l2
2 + l3

2 - 2l2l3cosβ = l1
2 + l4

2 - 2l1l4cosδ

The four angles are thus subject to three constraints. Choose α (the crank
angle) as the independent DoF. You can determine β, γ, and δ from α by
inverting the constraints.

Making an Equilibrium Guess
First guess the natural equilibrium. An obvious guess for the natural
equilibrium is for the crank (Bar 3) to point straight down, α = -90o.

1 Use the quadrilateral constraints to find

β = 313.2o, γ = 60.3o, and δ = 76.5o

2 Redefine the workspace angles to these values (converted to radians).

alpha = -90*pi/180; beta = 313.2*pi/180; gamma = 60.3*pi/180;
delta = 76.5*pi/180;
beta2 = pi - gamma - delta; delta2 = pi - delta;

3 Update the diagram and run the model again. This configuration is not the
natural equilibrium, but it is close.

3-42

Linearizing Mechanical Models

Determining the Natural Equilibrium with trim
Now find the natural equilibrium exactly by trimming the four bar in a
manner similar to “Constrained Trimming of a Four Bar Machine” on page
3-26, but without external torque actuation. Revolute1 is already manually
configured to be the cut joint in the closed loop, ensuring the DoF represented
by Revolute4 is not eliminated from state space when the loop is cut.

1 Set the analysis mode to Trimming. Trimming mode inserts a subsystem
and an output block that outputs a four-component signal representing the
mechanical constraints resulting from the closed loop.

2 Use mech_stateVectorMgr to obtain the system’s state vector:

StateManager = ...
mech_stateVectorMgr('mech_four_bar_lin/Ground_2');

StateManager.StateNames
ans =

'mech_four_bar_lin/Revolute2:R1:Position'
'mech_four_bar_lin/Revolute3:R1:Position'
'mech_four_bar_lin/Revolute4:R1:Position'
'mech_four_bar_lin/Revolute2:R1:Velocity'
'mech_four_bar_lin/Revolute3:R1:Velocity'
'mech_four_bar_lin/Revolute4:R1:Velocity'

Revolute1 is the cut joint and is missing from the list. States 1, 2, and 3 are
the revolute 2, 3, and 4 angles, respectively; while states 4, 5, and 6 are the
revolute 2, 3, and 4 angular velocities, respectively.

3 Set up the necessary trimming vectors:

x0 = [0;0;0;0;0;0]; ix = [];
u0 = []; iu = [];

y0 = [0;0;0;0];
iy = [1;2;3;4];
dx0 = [0;0;0;0;0;0];
idx = [3;6];

The x0 vector tells the trim command to start its search for the equilibrium
with the four bar in its initial configuration (the equilibrium guess you
entered into the workspace previously) and with zero angular velocities.

3-43

3 Analyzing Motion

The index vector ix sets the states that, in the actual equilibrium, should
keep the values specified in x0. Here there are none.

The u0 and iu vectors specify system inputs, but there are none.

The y0 vector sets the initial values of the constraint outputs to zero. The
index vector iy requires that the constraint outputs at equilibrium be
equal to their initial values (0). This ensures that the solution satisfies
the mechanical constraints.

The dx0 vector specifies the initial state derivatives. The initial derivatives
of the angles (i.e., the angular velocities) and of the angular velocities (i.e.,
the angular accelerations) are set to zero. The index vector idx specifies
that the velocity and acceleration of Revolute4 in the natural equilibrium
must vanish. It is not necessary to constrain the derivatives of the other
states because the system has only one independent DoF.

4 Now trim the system:

[x,u,y,dx] = ...
trim('mech_four_bar_lin',x0,u0,y0,ix,iu,iy,dx0,idx);

The u vector is empty. The components of y and dx vanish, within
tolerances, indicating that in equilibrium, respectively, the mechanical
constraints are satisfied and the state derivatives vanish. The last three
components of x vanish, indicating zero angular velocities at equilibrium.
The first three components of x represent the natural equilibrium angles
(in radians), measured as deviations from the initial configuration. The
Revolute4 angle is -0.2395 rad = -13.7o from the starting point.

From x, you can calculate all the angle values. The natural equilibrium is
αeq = -90

o - 13.7o = -103.7o, βeq = 310.1
o + 13.0o = 323.1o, γeq = 60.3

o + 2.5o =
62.8o, and δeq = 360

o - αeq - βeq - γeq = 74.7
o.

Linearizing the Model at the Natural Equilibrium
You can now linearize the system at this trim point.

1 Reset the angles in your workspace to the natural equilibrium point:

alpha = alpha + x(3); beta = beta + x(2); gamma = gamma + x(1);
delta = 2*pi - alpha - beta - gamma; beta2 = pi - gamma - delta;

3-44

Linearizing Mechanical Models

delta2 = pi - delta;

2 Change the analysis mode back to Forward Dynamics and update the
diagram. Run the model to check that the mechanism indeed does not move.

3 To obtain a nontrivial linearized model, you need at least one input and
one output. Connect a Joint Actuator to Revolute4 to actuate it with a
torque. Then insert Simulink Inport and Outport blocks to input the torque
and measure the angular velocity.

4 Set the input torque to zero and the initial state to the model’s initial
configuration, the natural equilibrium:

u = 0; x = [0;0;0;0;0;0];

5 Linearize the model and use minreal to eliminate the redundant states:

[A,B,C,D] = linmod('mech_four_bar_lin',x,u);
[a,b,c,d] = minreal(A,B,C,D);

leaving two states, α and dα/dt. The component a(2,1) = -80.1 < 0, indicating
that this natural equilibrium is stable. The linearized motion is governed
by d2α/dt2 = a(2,1)*α.

For More Information About State Space and Linearization
See “Open-Topology Linearization: Double Pendulum” on page 3-34 for more
about the linearized state space representation.

3-45

3 Analyzing Motion

3-46

4

Motion, Control, and
Real-Time Simulation

SimMechanics software and Simulink form a powerful basis for advanced
controls applications: trimming and linearizing motion, analyzing and
designing controllers, generating code from the plant and controller models,
and simulating controller and plant on dedicated hardware. This chapter is
a connected set of case studies illustrating these methods. As its example
system, the studies use the Stewart platform, a moderately complex, six
degree-of-freedom positioning system.

• “Guide to This Chapter” on page 4-3

• “About the Stewart Platform” on page 4-7

• “Modeling the Stewart Platform” on page 4-13

• “Trimming and Linearizing Through Inverse Dynamics” on page 4-24

• “About Controllers and Plants” on page 4-35

• “Analyzing Controllers” on page 4-39

• “Designing and Improving Controllers” on page 4-50

• “Generating and Simulating with Code” on page 4-71

• “Simulating with Hardware in the Loop” on page 4-82

Before attempting these intricate case studies, you should understand
the simpler motion analysis concepts, methods, and results of Chapter 3,
“Analyzing Motion”.

4 Motion, Control, and Real-Time Simulation

“Translating a CAD Stewart Platform” presents a related example, converting
a Stewart platform computer-aided design assembly into a SimMechanics
model.

4-2

Guide to This Chapter

Guide to This Chapter

In this section...

“About the Stewart Platform and How It Is Modeled” on page 4-3

“About the Case Studies” on page 4-3

“Products Needed for the Case Studies” on page 4-4

“References” on page 4-5

About the Stewart Platform and How It Is Modeled
The chapter starts with a summary of the Stewart platform and the models.

• “About the Stewart Platform” on page 4-7

• “Modeling the Stewart Platform” on page 4-13

About the Case Studies
The studies use Stewart platform models and a suite of products to help
you carry out advanced mechanical design and simulation tasks. The tasks
are grouped into the following case studies. In them, you make use of such
techniques as scripts, linked libraries, and configurable subsystems to simplify
the task of defining a complex Simulink and SimMechanics simulation.

• “Trimming and Linearizing Through Inverse Dynamics” on page 4-24

• “About Controllers and Plants” on page 4-35

• “Analyzing Controllers” on page 4-39

• “Designing and Improving Controllers” on page 4-50

• “Generating and Simulating with Code” on page 4-71

• “Simulating with Hardware in the Loop” on page 4-82

Structure and Dependencies
The studies begin with motion analysis and control design. You learn about
the Stewart platform’s motion, then use this understanding to implement
controllers for it. The studies end with code generation and hardware

4-3

4 Motion, Control, and Real-Time Simulation

implementation. You learn how to generate code from the controller and
platform models, compile and run the generated code, and how to put that
code on a hardware target.

The first study is important for a deeper understanding of trimming and
might be useful before attempting the control design studies that follow. The
last two studies are connected, and you should work through them in order.

Caution SimMechanics code generation is intended for rapid prototyping and
hardware-in-the-loop applications. It is not intended to generate production
code in embedded controller applications.

Case Study Files
Each study has an associated set of demo files and is based on an appropriate
variant model of the Stewart platform.

Saving Intermediate Stages of Work
It is recommended that you complete each case study in one session. If you
cannot, for lack of time, you should periodically save your intermediate results
from your workspace to a MAT-file.

Products Needed for the Case Studies
The case studies of this chapter require MATLAB, Simulink, and the
SimMechanics product throughout. You should have a good working
knowledge of all three.

In addition, you use several specialized products for specific tasks in each
study. You should have at least a beginner’s level experience with each.

4-4

Guide to This Chapter

Product Required for Case Study

Control System Toolbox “Trimming and Linearizing Through Inverse
Dynamics” on page 4-24 (one part)
“Analyzing Controllers” on page 4-39
“Designing and Improving Controllers” on
page 4-50

Robust Control Toolbox™ “Designing and Improving Controllers” on
page 4-50 (last part)

Simulink® Control
Design™

“Designing and Improving Controllers” on
page 4-50

Real-Time Workshop “Generating and Simulating with Code” on
page 4-71 and
“Simulating with Hardware in the Loop” on
page 4-82

xPC Target “Simulating with Hardware in the Loop” on
page 4-82

References

[1] Stewart, D., “A platform with six degrees of freedom,” Proc. Inst. Mech.
Eng., Vol. 180, part I(15), 1965-1966, pp. 371-386.

[2] Wilkie, J., M. Johnson, and R. Katebi. Control Engineering: An
Introductory Course. Hampshire, United Kingdom: Palgrave/St. Martin’s
Press, 2002.

[3] Maxwell, J. C., “On Governors,” Proc. R. Soc. (London), Vol. 16(100)
(March 1868), pp. 270-283.

[4] Smith, N., and J. Wendlandt, “Creating a Stewart Platform Model
Using SimMechanics,” MATLAB Digest 10(5) (September 2002),
http://www.mathworks.com/company/newsletters/digest/sept02/stewart.html.
This case study includes only the actual leg trajectory in the derivative
term, not the reference trajectory. The derivative term acts in that case like
damping, not as error correction.

4-5

http://www.mathworks.com/products/control/
http://www.mathworks.com/products/robust/
http://www.mathworks.com/products/simcontrol/
http://www.mathworks.com/products/simcontrol/
http://www.mathworks.com/products/rtw/
http://www.mathworks.com/products/xpctarget/
http://www.mathworks.com/company/newsletters/digest/sept02/stewart.html

4 Motion, Control, and Real-Time Simulation

[5] Parsons, L., and J. Glass, “Recommendations for Creating Accurate
Linearized Models in Simulink,” MATLAB Digest 12(4) (July 2004),
http://www.mathworks.com/company/newsletters/digest/july04/linmodels.html.

[6] Glover, K., and D. C. McFarlane. “Robust stabilisation of normalised
coprime factor plant descriptions with H-infinity bounded uncertainty.” IEEE
Trans. on Automatic Control, Vol. 34, 1989, pp. 821-830.

[7] Georgiou, T. T., and M. C. Smith. “Optimal robustness in the gap metric.”
IEEE Trans. on Automatic Control, Vol. 35(6), 1990, pp. 673-687.

[8] Janka, R. S., Specification and Design Methodology for Real-Time
Embedded Systems (New York/Berlin: Springer-Verlag, 2002).

[9] Li, Q., and C. Yao, Real-Time Concepts for Embedded Systems (Gilroy,
California: CMP Books, 2003).

[10] Ledin, J., M. Dickens, and J. Sharp, “AIAA 2003: Single Modeling
Environment for Constructing High-Fidelity Plant and Controller
Models,” American Institute of Aeronautics and Astronautics, 2003,
http://www.mathworks.com/products/xpctarget/technicalliterature.html.

4-6

http://www.mathworks.com/company/newsletters/digest/july04/linmodels.html
http://www.mathworks.com/products/xpctarget/technicalliterature.html

About the Stewart Platform

About the Stewart Platform

In this section...

“Origin and Uses of the Stewart Platform” on page 4-7

“Characteristics of the Stewart Platform” on page 4-7

“Counting Degrees of Freedom in the Stewart Platform” on page 4-8

Origin and Uses of the Stewart Platform
The Stewart platform is a classic design for position and motion control,
originally proposed in 1965 as a flight simulator, and still commonly used for
that purpose [1]. Since then, a wide range of applications have benefited
from the Stewart platform. A few of the industries using this design include
aerospace, automotive, nautical, and machine tool technology. The platform
has been used to simulate flight, model a lunar rover, build bridges, aid in
vehicle maintenance, design crane hoist mechanisms, and position satellite
communication dishes and telescopes, among other tasks.

Characteristics of the Stewart Platform
The Stewart platform has an exceptional range of motion and can be
accurately and easily positioned and oriented. The platform provides a
large amount of rigidity, or stiffness, for a given structural mass, and thus
provides significant positional certainty. The platform model is moderately
complex, with a large number of mechanical constraints that require a robust
simulation.

Most Stewart platform variants have six linearly actuated legs with varying
combinations of leg-platform connections. The full assembly is a parallel
mechanism consisting of a rigid body top or mobile plate connected to an
immobile base plate and defined by at least three stationary points on the
grounded base connected to the legs.

The Stewart platform used here is connected to the base plate at six points by
universal joints. Each leg has two parts, an upper and a lower, connected by
a cylindrical joint. Each upper leg is connected to the top plate by another
universal joint. Thus the platform has 6*2 + 1 = 13 mobile parts and 6*3 = 18
joints connecting the parts.

4-7

4 Motion, Control, and Real-Time Simulation

Counting Degrees of Freedom in the Stewart Platform
The standard Stewart platform design has six independent degrees of
freedom (DoFs). The mobile plate, if disconnected from the legs and thus
unconstrained, also has six DoFs. The Stewart platform therefore exactly
reproduces the possible motion of a free plate, but with the added benefit of
stable and precise positioning control.

Here are two ways to count the Stewart platform DoFs.

• “Counting Degrees of Freedom on Bodies in Space” on page 4-8 starts with
the disassembled platform parts as physical bodies in space.

• “Counting Degrees of Freedom as Joint Primitives” on page 4-9 starts with
the platform represented as connected Body and Joint blocks.

Counting Degrees of Freedom on Bodies in Space
Start with the disassembled Stewart platform parts as unconstrained moving
bodies. As you assemble the platform, you constrain the bodies as you connect
them with joints. The base plate is immobile.

This approach is not the way that a SimMechanics simulation counts DoFs.
See “Counting Degrees of Freedom as Joint Primitives” on page 4-9.

Bodies with DoFs. Each free body in space has six DoFs. Only after you
attach them to one another with joints are they no longer able to move freely.

Joints as Constraints. Connecting bodies with joints constrains the two
bodies so they can no longer move freely relative to one another.

For example, a universal joint connection allows two rotational DoFs, but
imposes four constraints, three translational (positional) and one rotational.

Assembling the Stewart Platform Parts. Start assembling the Stewart
platform. Each joint attachment simultaneously connects and constrains the
bodies. In all, each leg imposes 12 constraints on itself and the top plate.

• The universals connecting the lower legs to the base plate impose four
constraints:

- Three positional, requiring two points to be collocated

4-8

About the Stewart Platform

- One rotational, preventing the lower leg from rotating about its long axis
(with respect to the immobile base)

• The cylindricals connecting the upper to the lower legs impose four
constraints:

- Two positional, allowing the two legs to slide along the long axis but not
translate in the other two directions

- Two rotational, allowing the upper leg to rotate about the long axis (with
respect to the lower leg) but not rotate about the other two directions

• The universals connecting the top plate to the upper legs impose four
constraints:

- Three positional, requiring two points to be collocated

- One rotational, preventing the upper leg from rotating about its long
axis (with respect to the top plate — not with respect to the lower leg)

Obtaining the Independent DoFs. The Stewart platform has 13 moving
bodies. With no constraints, the disassembled Stewart platform has 13*6 =
78 DoFs.

Assembling the parts imposes 12*6 = 72 constraints. Therefore, the Stewart
platform has 13*6 - 12*6 = 6 independent DoFs.

Counting Degrees of Freedom as Joint Primitives
Start with the Stewart platform as an assembled SimMechanics model.

Bodies Without DoFs. A SimMechanics Body carries no DoFs. Instead,
pairs of Bodies are connected by Joints, which express the motions of one
Body relative to another.

Six Grounds represent the base plate. Thirteen Bodies represent the moving
parts.

Joints Primitives as DoFs. Each Joint contains primitives. Translational
and rotational primitives each express one DoF. (These are the only primitive
types used here.) The Stewart platform model contains 18 Joints containing
6*6 = 36 primitives, of which 30 are rotational and 6 are translational.

4-9

4 Motion, Control, and Real-Time Simulation

• Six Universal joints connecting the lower legs to the base. Each contains
two rotational primitives.

• Six Cylindrical joints connecting the lower to the upper legs. Each contains
a rotational and a translational primitive.

• Six Universal joints connecting the upper legs to the top plate. Each
contains two rotational primitives.

Counting Loops. The Stewart platform legs form six loops, but only five are
independent. You can obtain a topologically equivalent platform by flattening
the top plate and base into lines and counting five loops that have the six
legs as sides:

Cutting the Stewart Platform Joints and Deriving the Tree. To simulate
a machine with closed loops (like the Stewart platform), a SimMechanics
simulation replaces it internally with an equivalent machine (the spanning
tree) obtained by cutting all the independent loops once and replacing the cuts
with (invisible) equivalent constraints.

Obtain the spanning tree by cutting five of the six upper Universals. This
cutting is just enough to open all loops but not disconnect the machine into
disjoint parts. The tree contains 13 (uncut) Joints constituting 6*(2+2) +
2 = 26 DoFs.

4-10

About the Stewart Platform

Imposing the Cutting Constraints and Deriving the Independent DoFs.
To complete the conversion of the closed-loop machine into an equivalent tree,
impose constraints to replace the cut Joints. There are 20 such constraints.
Each constraint is equivalent to reattaching a cut Joint and analyzes into
five sets of

• Three positional constraints, requiring two points to be collocated

• One rotational constraint, preventing the upper leg from rotating about its
long axis relative to the top plate

Thus reattaching the cut Joints to reassemble the platform leaves 26 - 5*4 =
6 independent DoFs.

Representing the Independent Degrees of Freedom
These six independent DoFs are usually taken to be the six leg lengths. Every
other DoF identified here is now dependent on these six lengths. Each time
you change a length, the universals connecting the legs to the base and top
plate rotate, the top plate shifts and rotates, and the upper legs rotate about
their long axes.

Alternatively and equivalently, you can take the six independent DoFs to be
the six DoFs of the top, mobile plate. By connecting the top plate, you replace
the six independent DoFs of an unconstrained plate with six DoFs under the
precise and stable control of the six-leg positioning system.

The six DoFs of the connected top plate are not in addition to the leg-length
DoFs. They are just an equivalent, replacement description of the same six
independent DoFs. The whole platform system, once fully connected, always
has exactly six independent degrees of freedom.

For More About Bodies, Joints, Degrees of Freedom, and
Topology
Chapter 1, “Modeling Mechanical Systems” shows how SimMechanics Bodies
and Joints represent bodies and DoFs. See especially these sections:

• “Modeling Degrees of Freedom” on page 1-19

• “Validating Mechanical Models” on page 1-85

4-11

4 Motion, Control, and Real-Time Simulation

Chapter 2, “Running Mechanical Models” explains the steps executed to
analyze and simulate a machine. See especially these sections:

• “How SimMechanics Software Works” on page 2-24

• “Troubleshooting Simulation Errors” on page 2-26

4-12

Modeling the Stewart Platform

Modeling the Stewart Platform

In this section...

“How the Stewart Platform Is Modeled” on page 4-13

“Modeling the Physical Plant” on page 4-13

“Modeling Controllers” on page 4-15

“Initializing the Stewart Platform” on page 4-18

“Identifying the Simulink and Mechanical States of the Stewart Platform”
on page 4-21

“Visualizing the Stewart Platform Motion” on page 4-23

How the Stewart Platform Is Modeled
This section explains the essential details of modeling the Stewart platform
in the SimMechanics environment. To understand the section better, use
any top-level model from the case studies of this chapter, except the models
of “Trimming and Linearizing Through Inverse Dynamics” on page 4-24.
These are different because they lack a controller subsystem and consist of
a plant model alone.

The control design model, mech_stewart_control, is this section’s example.

Modeling the Physical Plant
In three of the case studies, a larger control system model contains a Plant
subsystem that incorporates the platform.

4-13

4 Motion, Control, and Real-Time Simulation

Viewing the Platform Model
The Plant subsystem models the Stewart platform’s moving parts, the legs
and top plate. Open this subsystem.

Stewart Platform Model (Control Design Version)

Each of the legs is an instance of a library block located in another library
model, mech_stewartplatform_leg or mech_stewart_control_equil_leg.

1 Select one of the leg subsystems and right-click. Select Link Options,
then Go To Library Block, to open this library.

2 Open the masked library block, Leg Subsystem, and the individual Body
and Joint blocks that make up a whole leg.

3 Now close the blocks, subsystems, and linked libraries and return to the
top-level model.

4-14

Modeling the Stewart Platform

Modeling Controllers
Except in the “Trimming and Linearizing Through Inverse Dynamics”
on page 4-24 study, the Stewart platform models contain controllers
imposing actuating forces that guide the platform’s motion to follow as
closely as possible a nominal or reference trajectory. Implementing a
controller requires computing the motion errors, the difference of the
reference and actual motions of the platform. All the case study models use
proportional-integral-derivative (PID) control.

Generating the Reference Trajectory
Each model controller requires a reference trajectory.

1 Open the Leg Reference Trajectory subsystem.

This set of blocks generates the set of six leg lengths, as functions of time,
corresponding to a desired trajectory for the top plate.

2 Open the subsystem called Top Plate Reference. This set of blocks
generates a reference trajectory in terms of linear position and three
orientation angles, as a function of time. The workspace variable freq sets
the frequency of the reference motion.

Stewart Platform Reference Trajectory Subsystem (Control Design Version)

• The reference trajectory provided uses sinusoidal functions of time to
define the rotational and translational degrees of freedom.

4-15

4 Motion, Control, and Real-Time Simulation

• If you want, you can design and implement another reference trajectory
of your choosing and replace this sub-subsystem.

Whatever comes out of Top Plate Reference, the subsystem Leg Reference
Trajectory assumes the translational position/three-angle form for the top
plate. The rest of the Leg Reference Trajectory subsystem transforms these
six degrees of freedom (DoFs) into the equivalent set of six DoFs expressed
as the lengths of the six platform legs. The reference trajectory output of the
subsystem is a six-vector of these leg lengths.

Finding the Motion Error
The actuating force on leg r is a function of the motion error. The error
requires finding the instantaneous length of each leg from the positions of
that leg’s top and bottom connection points.

Defining the Length of a Stewart Platform Leg

4-16

Modeling the Stewart Platform

The motion error is the difference of the desired or reference length of the leg
and its instantaneous or actual length:

Error reference length of leg actual length of leg= = −Er

 = − ⋅ −L t Rr r rtraj, t, b,() |() |p p

The reference length Ltraj(t) is given as a function of time by the output of
the Leg Reference Trajectory subsystem. The vectors p, pt,r, and pb,r are
defined in the preceding figure. The orthogonal rotation matrix R specifies
the orientation of the top plate with respect to the bottom.

The Standard PID Controller and Its Control Law
All the Stewart platform models use a simple PID controller and Joint Sensor
blocks to measure motion. The simplest implementation of trajectory control
is to apply forces to the plant proportional to the motion error. PID feedback
is a common form of linear control.

A PID control law is a linear combination of a variable detected by a sensor, its
time integral, and its first derivative. This Stewart platform’s PID controller
uses the leg position errors Er and their integrals and velocities. The control
law for each leg r has the form:

F E E Eact, 0

t
r p r i r d rK K dt K d dt= + +∫ ()

The controller applies the actuating force Fact,r along the leg.

• If Er is positive, the leg is too short, and Fact,r is positive (expansive).

• If Er is negative, the leg is too long, and Fact,r is negative (compressive).

• If Er is zero, the leg has exactly the desired length, and Fact,r is zero.

The real, nonnegative Kp, Ki, and Kd are, respectively, the proportional,
integral, and derivative gains that modulate the feedback sensor signals in
the control law:

• The first term is proportional to the instantaneous leg position error, or
deviation from reference.

4-17

4 Motion, Control, and Real-Time Simulation

• The second term is proportional to the integral of the leg position error.

• The third term is proportional to the derivative of the leg position error.

The result is Fact,r, the actuator force (input) applied by the controller to the
legs. The proportional, integral, and derivative terms tend to make the legs’
top attachment points pt,r follow the reference trajectories by suppressing
the motion error.

For More About Controllers
The case study, “About Controllers and Plants” on page 4-35, discusses
controlling platform motion in greater detail. In that study, you also use
an H-infinity controller, as well as use transfer functions to take motion
derivatives.

In addition, consult “References” on page 4-5.

Initializing the Stewart Platform
When representing the physical components of the Stewart platform model
with SimMechanics blocks and the control components with Simulink blocks,
you must define the geometry of its initial state and the mass parameters of
the Stewart platform bodies. Although each case study in this chapter uses
a variant model, all initialize the platform and controller configuration in
a common way.

Geometric, mass, dynamical, and controller information is specified in the
block dialogs by referencing variables in your MATLAB workspace. A script
accompanies the Stewart platform models and sets these values.

Running this script configures the blocks in their starting geometric state,
with the correct mass properties for the bodies. When you open it, each model
uses the same initialization script as a pre-load function. To see this setting,

1 Go to the File menu and select Model Properties.

2 Then in the dialog, select the Callbacks tab and find theModel pre-load
function field.

4-18

Modeling the Stewart Platform

Stewart Platform Initialization Files

File Purpose

mech_stewart_studies_setup Script to fill the workspace with geometric, dynamical, and
controller data.

inertiaCylinder Function called by mech_stewart_studies_setup. Computes
the principal inertias of a solid cylinder.

Body and Joint Geometric Configuration
The script first defines basic angular unit conversions and axes. The World
coordinate system (CS) is located at the center of the immobile base plate. The
connection points on the base and top plate are defined with respect to World.
These definitions include the offset angle of 60 degrees between the base
and top plates, the radii of both the base and top plates, the initial position
height of the top plate, and the vectors pointing along the legs. The array of
top points is permuted so that the same index represents the top and bottom
connection points for the same leg.

The script calculates the revolute and cylindrical axes used in the joint blocks
of the leg subsystems. There are two revolute axes for each Universal joint
that connects an upper leg to the top plate, one cylindrical and one revolute
axis for the linear motion of the Cylindrical joint connecting upper and lower
legs, and two revolute axes for each Universal block that connects a lower leg
to the base plate. The script then configures all 13 moving bodies by defining
coordinate systems at the center of gravity (CG) of each.

The top plate’s home configuration is symmetric equilibrium: flat, with equal
leg lengths specified by the workspace vector leg_length.

Body Mass Properties
The script defines the mass properties of all bodies. These comprise the
inertia tensors and masses for the top plate, the bottom plate, and the legs.
The mass properties calculation assumes that the platform is made with
steel. The script calls the function inertiaCylinder to calculate the inertia
tensors and masses of the legs and the top and base plates, given the material
density, the length and inner and outer radii of the leg cylinders, and the
thicknesses and radii of the top and base plates.

4-19

4 Motion, Control, and Real-Time Simulation

Motion Constants, Controller Parameters, and Initial Condition
In its final steps, the script defines motion and control constants as workspace
variables: motion frequency, derivative filtering cutoff, leg actuator force
saturation, and controller gains. Each case study model uses some or all of
these constants, which you can change as desired.

Real force actuators are saturate at a specific force level. The Force Saturation
block limits the actuating force to the value of the workspace variable
force_act_max.

The integral (I) part of the PID controller exhibits an extended response time
whose overall effect is controlled by the ratio of Ki to Kp. The Integrator for
the I part has a nonzero Initial condition field, specified by the workspace
variable initCondI, adjustable to compensate for initial transient behavior.
The script initializes its value to

(upper_leg_mass+lower_leg_mass+(top_mass*1.3/6))*9.81/Ki

corresponding to the leg forces in symmetric equilibrium.

Motion and Filtering Constants

Dynamical
Feature

Workspace
Variable

Associated
Natural
Frequency

Associated
Time Scale

Top plate motion freq = π rad/s freq/2π = 0.5 Hz 2π/freq = 2 s

Filtered
derivative cutoff

A = 100*freq =
100π rad/s

A/2π = 50 Hz 2π/A = 0.02 s

PID Controller Constants

Dynamical Constant Workspace Variable

Force saturation force_act_max = 3e5 newtons (N)

Integral (I) gain Ki = 1e4 (newtons/meter/second) (N/m-s)

Proportional (P) gain Kp = 2e6 newtons/meter (N/m)

Derivative (D) gain Kd = 4.5e4 newtons-seconds/meter (N-s/m)

4-20

Modeling the Stewart Platform

Identifying the Simulink and Mechanical States of
the Stewart Platform
For the purposes of SimMechanics motion analysis, you need to know the
model’s Simulink and mechanical states. These are distinct from the system’s
degrees of freedom (DoFs) and depend on the analysis mode you choose.

Pure Simulink States
If you use a controller or other subsystem made up of pure Simulink blocks
with your Stewart platform, your model might contain Simulink states. For
example, Integrator and Transfer Fcn blocks each have an associated state,
and State-Space blocks can have many.

The default Stewart platform controller is a PID subsystem, which integrates
six feedback signals and thus has six Simulink states. In the “Analyzing
Controllers” on page 4-39 and “Designing and Improving Controllers” on page
4-50 studies, you can also choose to use the filtered derivative, which has 12
transfer functions and thus adds 12 Simulink states.

Mechanical States in Forward Dynamics Mode
A mechanical system modeled with Joint blocks contains mechanical states
distinct from Simulink states that include both joint position and velocity. In
Forward Dynamics mode, the Stewart platform contains 52 tree states, of
which 12 are independent.

The joints and their related DoFs are discussed in “Counting Degrees of
Freedom in the Stewart Platform” on page 4-8.

Joint Primitives and States. Each Joint consists of one or more primitives.
The position and velocity of a joint primitive each have a state. The Stewart
platform has 36 joint primitives and thus potentially 72 states.

Cutting Joints and Obtaining the Tree States. Because the Stewart
platform has closed topology, SimMechanics model will cut five of the Joints
to arrive at an equivalent open-topology or tree machine. These Joints are
replaced internally by equivalent cutting constraints.

Five Universals and 5*2*2 = 20 joint primitives are eliminated this way. The
equivalent open machine thus has 72 - 20 = 52 tree states.

4-21

4 Motion, Control, and Real-Time Simulation

Counting the Cutting Constraints. Not all these states are independent.
There are 40 equivalent constraints that replace the cut Joints.

• Each cut Universal imposes one rotational and three position constraints.

• Each constraint also constrains the corresponding velocity.

• There are five cut Joints.

Thus there are 5*2*4 = 40 invisible constraints generated by the cutting.

Finding the Independent States. Thus the Stewart platform model has 52
- 40 = 12 independent mechanical states, corresponding to the six independent
DoFs and their velocities.

Mechanical States in Trimming and Kinematics Modes
You can also analyze the Stewart platform’s motion in inverse dynamics and
locate steady-state operating points.

• Because the Stewart platform is a closed-loop machine, you must simulate
its inverse dynamics in the Kinematics mode.

• You can find operating points in the Trimming mode with the Simulink
trim command.

In both the inverse dynamics and trimming cases, the Simulink states
associated with the SimMechanics joint primitives are not the DoFs, but the
(invisible) joint-cutting constraints that reduce the tree states to independent
states. The state values measure how well the constraints are satisfied. A
zero value means a constraint is satisfied perfectly.

In the mechanical part of the Stewart platform model, there are 52 tree states
and 12 independent states. Thus the SimMechanics model counts 52 - 12 =
40 cutting constraints. In the Kinematics and Trimming modes, these 40
constraints are the mechanical states.

Open Topology and Inverse Dynamics Mode. If the Stewart platform
had an open topology, you would simulate its inverse dynamics in Inverse
Dynamics mode instead. However, there would be no closed loops, and the
simulation would not cut any Joints. With no cutting constraints, an open
topology machine has no states in Inverse Dynamics or Trimming mode.

4-22

Modeling the Stewart Platform

For More About Mechanical States, Cutting Loops, and Analysis
Modes
Learn more about SimMechanics states and loops in Chapter 1, “Modeling
Mechanical Systems”:

• “Cutting Machine Diagram Loops” on page 1-46

• “Validating Mechanical Models” on page 1-85

Consult the mech_stateVectorMgr command reference as well.

For more about analysis modes, see

• “Simulating and Analyzing Mechanical Motion”.

• Chapter 3, “Analyzing Motion”.

Visualizing the Stewart Platform Motion
To view mechanical animation, consult the SimMechanics Visualization and
Import Guide.

With the SimMechanics visualization window open, you can view the platform
motion from different perspectives. View the platform in the xy-plane, from
above. Then switch the view to the xz- or yz-plane.

The initial state of motion specified by the reference trajectory is slightly
different from the home configuration and generates an initial transient.

4-23

4 Motion, Control, and Real-Time Simulation

Trimming and Linearizing Through Inverse Dynamics

In this section...

“About Trimming and Inverse Dynamics” on page 4-24

“What Is Trimming?” on page 4-24

“Ways to Find an Operating Point” on page 4-25

“Trimming in the Kinematics Mode” on page 4-25

“Linearizing the Stewart Platform at an Operating Point” on page 4-29

“Further Suggestions for Inverse Dynamics Trimming” on page 4-32

About Trimming and Inverse Dynamics

Note This study requires Control System Toolbox at an optional step,
“Finding the Minimal Realization of the Linearized Model” on page 4-32.

This case study finds a Stewart platform steady state with the SimMechanics
Kinematics mode . You specify motions and determine the forces and
torques to produce those motions (the inverse dynamics problem). If you
are not familiar with implementing inverse dynamics in the SimMechanics
environment, work through the “Finding Forces from Motions” on page 3-7
before attempting this case study.

Use the Inverse Dynamics and Kinematics modes for inverse-dynamic
analysis of open- and closed-topology systems, respectively. The Stewart
platform has a closed topology and thus requires the Kinematics mode. Once
you have an operating point, you can linearize the motion.

What Is Trimming?
Trimming a system means locating a configuration of its states with certain
prior conditions imposed on the states and possibly their derivatives. In a
mechanical context, it means imposing conditions on certain positions and
velocities, then determining the remaining positions and velocities such that
the entire state of the machine is consistent. A by-product of mechanical

4-24

http://www.mathworks.com/products/control/

Trimming and Linearizing Through Inverse Dynamics

trimming is determination of the forces/torques necessary to produce the
specified motion. These motion states constitute a trim or operating point.
Trimming problems can have one solution, more than one, or none.

Pure inverse dynamics imposes prior motions on all degrees of freedom.
Then all the states are determined. (The consistency of the motions is not
guaranteed, but must be checked.) Only the forces/torques remain to be found.

Ways to Find an Operating Point
To find an operating point or steady state for a SimMechanics model,

• Use the trim command in Simulink. See “Trimming Mechanical Models”
on page 3-18.

• Use the more powerful techniques provided by Control System Toolbox and
Simulink Control Design. See “About Controllers and Plants” on page 4-35.

• Use the SimMechanics inverse dynamics modes. You can manipulate the
mechanical states of your model directly with motion actuation rather than
manipulate them through Simulink.

Trimming in the Kinematics Mode
Here are the files needed for this case study. The models also call the
initialization script and function. Open the first model.

File Purpose

mech_stewart_control_equil Kinematics model for
determining Stewart platform
force equilibrium

mech_stewart_control_equil_leg Library model of Stewart
platform leg for kinematic
analysis

mech_stewart_control_plant Forward dynamics model for
linearizing the Stewart platform

mech_stewartplatform_leg Library model of Stewart
platform leg for forward dynamic
analysis

4-25

4 Motion, Control, and Real-Time Simulation

Simulation Settings for Inverse Dynamics
The mech_stewart_control_equil model has some preset nondefault settings.

Configuration Parameters

Setting Value

Solver > Simulation time > Stop
time

0.005 seconds

Data Import/Export > Save to
workspace

Time and States selected >
tout and xout

4-26

Trimming and Linearizing Through Inverse Dynamics

Configuration Parameters (Continued)

Setting Value

SimMechanics > Diagnostics Mark automatically cut joints
selected

SimMechanics > Visualization Display machines after updating
diagram and
Show animation during
simulation selected

Machine Environment

Setting Value

Parameters > Analysis mode Kinematics

Parameters > Machine
Dimensionality

3D Only

Constraints > Constraint solver type Machine Precision

Constraints > Use robust singularity
handling

Selected

Specifying the Motion
The six Stewart platform legs are instances of a basic leg saved in the
mech_stewart_control_equil_leg library. It takes as inputs the motion
actuation signals that specify position and velocity as a function of time. The
position signals specify the platform’s motion relative to the initial geometric
configuration.

4-27

4 Motion, Control, and Real-Time Simulation

In mech_stewart_control_equil, the Motion subsystem specifies motion as
trivial: zeroes for all six leg positions and velocities. That is, the model holds
the platform still in its initial state.

Measuring the Steady-State Forces
Each Stewart platform leg outputs the computed leg force needed to maintain
the motion specified by the motion actuation. These six measured forces are
directed to your MATLAB workspace by the To Workspace block.

1 Open the To Workspace dialog.

The output forces are stored in the vector variable Forces. The block
retains the force vector only from the last time step.

2 Close the To Workspace dialog.

Running the Model and Obtaining the Outputs
Now run mech_stewart_control_equil.

1 Click Start and wait for the simulation to finish.

2 In your workspace, locate tout and xout. These are the time steps and the
corresponding state values, respectively.

In the Inverse Dynamics mode, there are 40 mechanical states counted by
Simulink, associated with the mechanical constraints. Consult “Identifying
the Simulink and Mechanical States of the Stewart Platform” on page 4-21.

4-28

Trimming and Linearizing Through Inverse Dynamics

3 Locate Forces in the workspace. These are the six force values along each
leg to hold the platform still against falling by gravity. The values are
positive (expansive) along the legs.

Linearizing the Stewart Platform at an Operating
Point
Knowing the steady-state forces needed to keep the platform still, you now
linearize another version of the model, mech_stewart_control_plant. It has
settings similar to mech_stewart_control_equil, except that:

• The Analysis mode is set to Forward Dynamics.

• The simulation time is 10 seconds.

• Time and Output, tout and yout, respectively, are saved to workspace.

4-29

4 Motion, Control, and Real-Time Simulation

Open the mech_stewart_control_plant model.

• The six legs are instances of the mech_stewartplatform_leg library. This
leg takes force as an input and outputs position and velocity, as appropriate
for forward dynamics.

• The standard model input variable is u. The force vector signal is a model
input.

• The position and velocity vector signals are model outputs. The Data
Import/Export output variable is yout and will appear in your workspace
assigned with data after you simulate.

4-30

Trimming and Linearizing Through Inverse Dynamics

Close the model.

Linearizing the Forward Dynamics Model
You can simulate the mech_stewart_control_plant model without opening it.

1 At the command line, enter

nomForces = Forces'; % Transpose the force vector

2 Linearize the model by entering

[A,B,C,D] = ...
linmod('mech_stewart_control_plant',[],nomForces);

The arguments are, in order,

• Model name

• Model state vector (not used)

• Model input vector u = nomForces

These (unreduced) output matrices are the standard state-space
representation of a linearized model. The space is defined by x, u, and y, the
state, input, and output vectors, respectively.

d dtx x u
y x u

= ⋅ + ⋅
= ⋅ + ⋅

A B
C D

4-31

4 Motion, Control, and Real-Time Simulation

There are 52 states, 6 inputs, and 12 outputs. Thus A, B, C, D have
dimensions 52-by-52, 52-by-6, 12-by-52, and 12-by-6, respectively. Not all
these matrix entries are independent.

Finding the Minimal Realization of the Linearized Model

Note This step requires Control System Toolbox.

Of the 52 mechanical states, the Stewart platform has only 12 independent
states, corresponding to six degrees of freedom (DoFs). Each DoF corresponds
to one position and one velocity.

To eliminate the redundant states, enter

[a,b,c,d] = ...
minreal(A,B,C,D);

40 states removed.

at the command line. The a, b, c, d matrices are reduced in size to 12-by-12,
12-by-6, 12-by-12, 12-by-6, respectively.

For More About Linearization and State Space
See “Open-Topology Linearization: Double Pendulum” on page 3-34 and the
Simulink documentation.

Further Suggestions for Inverse Dynamics Trimming
“Trimming in the Kinematics Mode” on page 4-25 and “Linearizing the
Stewart Platform at an Operating Point” on page 4-29 present the simplest
possible trimming scenario:

• All six degrees of freedom (DoFs) are determined by prior specification of
positions and velocities. These are the inputs to the problem. The outputs
are the forces necessary to maintain the specified motion. The simulation
solves a pure inverse dynamics problem.

• The actual motion actuation signals require the platform to hold still
relative to its initial geometric configuration.

4-32

http://www.mathworks.com/products/control/

Trimming and Linearizing Through Inverse Dynamics

General Trimming Conditions: Mixed Dynamics
In a more typical trimming problem, you specify some of the DoFs by motion
actuation and leave the others free to respond to forces/torques. Such a
scenario is a mixed dynamics problem. In the SimMechanics environment,
you can solve such problems in

• Forward Dynamics mode, where the tree states (DoFs corresponding to
uncut Joints) are the mechanical states

• Kinematics mode (closed topology), where the cutting constraints that
replace the cut Joints constitute the mechanical states

• Inverse Dynamics (open topology), where there are no mechanical states

Complementarity of Inverse and Forward Dynamics

Actuate DoF with... Sense on DoF...

Forces/torques Motions

Motions Forces/torques

If you want to solve such a problem for the Stewart platform, you need to

• Use a library leg with

- Force input

- Motion output

for each leg simulated in forward dynamics. You actuate it with a force and
measure its motion. Use the mech_stewartplatform_leg block library.

• Use a library leg with

- Motion input

- Force output

for each leg simulated in inverse dynamics. You actuate it with a motion and
measure the corresponding force. Use the mech_stewart_control_equil_leg
block library.

4-33

4 Motion, Control, and Real-Time Simulation

Using the Operating Point to Linearize a Model
The steady-state outputs are in turn the inputs for linearization.

Complementarity of Trimming and Linearization

Trimming Output Becomes... ...Linearization Input

Measured motions become... ...Motion actuation signals

Measured forces/torques become... ...Force/torque actuation signals

To carry out a linearization of your system,

1 Create a variant model in Forward Dynamics mode that takes

• The steady-state forces as linearization input force actuation

• The steady-state motions as linearization input motion actuation

2 Linearize with linmod.

linmod('forward_dynamics_model_to_linearize', state, input)

This command can feed model inputs into the linearized simulation as a
command argument. See the command reference for more details.

4-34

About Controllers and Plants

About Controllers and Plants

In this section...

“Modeling Controllers in Simulink and Plants in SimMechanics Software”
on page 4-35

“Nature of the Control Problem” on page 4-36

“Control Transfer Function Forms and Units” on page 4-37

“Controller-Plant Case Study Files” on page 4-37

“For More About Designing Controllers” on page 4-37

Modeling Controllers in Simulink and Plants in
SimMechanics Software

Note The next two studies assume some knowledge of control systems. In
addition to Simulink and the SimMechanics product, the studies use these
products:

• Control System Toolbox

• Simulink Control Design

• Robust Control Toolbox

You should have some experience with these tools before proceeding.

To understand trimming better, work through “Trimming and Linearizing
Through Inverse Dynamics” on page 4-24.

A classic engineering problem is the design of controllers for a physical
system, the plant [2]. A SimMechanics model can represent a complex
mechanical system and helps you design and implement a control system for
the plant, in conjunction with Simulink and related control design products.

In the next two case studies, you use SimMechanics software to model the
plant and Simulink to analyze and synthesize controllers. You explore a basic

4-35

http://www.mathworks.com/products/control/
http://www.mathworks.com/products/simcontrol/
http://www.mathworks.com/products/robust/

4 Motion, Control, and Real-Time Simulation

challenge of control design, the tradeoff between responsiveness and stability,
by implementing first a simple controller, then a more complex and robust
one [4]. This section is preliminary to those studies.

Nature of the Control Problem
The motion of an uncontrolled physical system is represented by its position
and velocity variables arranged into a state vector X. The dynamics of the
system is described by a force law:

d dtX f X= ()

Introducing control means introducing sensors and actuators that modify the
system’s otherwise natural motion. The actuators impose artificial forces —
collectively, the inputs U — on the system, while the sensors detect motions
and report outputs Y. The dynamics of the controlled system are modified:

d dtX f X U

Y X U

= ()
= ()

,

,g

The U and Y are the control variables of the system.

By selecting the proper set of U and Y and a feedback control or compensator
law U = c(Y) that modifies the system’s motion X in a desired way, you
impose control actuator forces for the relevant range of X, U, and Y.

Selecting c is the fundamental problem of control design. The desired
trajectory of X is the reference or nominal trajectory. The difference of the
actual and reference trajectories is the motion error. Finding the actuator
forces needed to produce a desired motion is closely related to the problem of
inverse dynamics. See the case study, “Trimming and Linearizing Through
Inverse Dynamics” on page 4-24.

4-36

About Controllers and Plants

Control Transfer Function Forms and Units
The controller and plant transfer functions are often called C and G,
respectively. The combined controller-plant transfer function forms are the
open-loop CG and the closed-loop CG/(1+CG).

Controller and plant response magnitudes are measured in decibels (dB).

Controller-Plant Case Study Files
The next two case studies use these files, in addition to the initialization
script and function.

File Purpose

mech_stewart_control Main model

mech_stewart_control_deriv Configurable subsystem:
Derivative block or transfer
function (filtered)

mech_stewart_controllers Configurable subsystem: Null, PID,
or H-infinity controller

mech_stewartplatform_leg Library model of Stewart platform
leg; used six times in the Plant
subsystem of the main model

For More About Designing Controllers
The problems and techniques of the next two case studies only touch the
basics of control design. In practice, you need to consider additional issues
and goals. Also consult “References” on page 4-5.

Finding Other Operating Points
To fully understand the plant, you need to find plant operating points
other than the simple ones used here and optimize the controller in other
representative states.

See the preceding case study, “Trimming and Linearizing Through Inverse
Dynamics” on page 4-24.

4-37

4 Motion, Control, and Real-Time Simulation

Compensating for Noise and Uncertainty
To design more robust controllers, you should consider the effect of parameter
uncertainty and signal noise. This step involves comparing typical plant
motion frequencies, noise frequencies, and filtered derivative cutoffs.

The following toolboxes can help with such tasks:

• Robust Control Toolbox

• Simulink® Design Optimization™

Designing for Hardware Implementation
To move toward hardware implementation, you must consider discretizing the
controller [8]. Among other requirements, this necessitates using a fixed-step
solver, optimizing the solver step size and sample rate, and adjusting the
filtered derivative cutoff.

See the final two case studies:

• “Generating and Simulating with Code” on page 4-71

• “Simulating with Hardware in the Loop” on page 4-82

4-38

http://www.mathworks.com/products/robust/
http://www.mathworks.com/products/sl-design-optimization/

Analyzing Controllers

Analyzing Controllers

In this section...

“Implementing a Simple Controller for the Stewart Platform” on page 4-39

“A First Look at the Stewart Platform Control Model” on page 4-39

“Improper and Biproper PID Controllers” on page 4-42

“Analyzing the PID Controller Response” on page 4-46

Implementing a Simple Controller for the Stewart
Platform

Note Before working through this study, consult the control design
preliminary, “About Controllers and Plants” on page 4-35. The second control
design study, “Designing and Improving Controllers” on page 4-50, builds on
the results and concepts of this study.

In addition to Simulink and the SimMechanics product, this study uses the
Control System Toolbox product.

This first control design case study implements the Stewart platform control
system with the standard preoptimized proportional-integral-derivative
(PID) controller. It introduces you to the overall model and the uncontrolled
Stewart platform motion. It then shows how the PID controller works, how to
make it more realistic with a filtered derivative, and how to exploit classical
control techniques to analyze the PID response.

A First Look at the Stewart Platform Control Model
Open the mech_stewart_control model.

4-39

http://www.mathworks.com/products/control/

4 Motion, Control, and Real-Time Simulation

Stewart Platform Control Design Model

The green controller subsystem is linked to an enabled subsystem in a related
library model, mech_stewart_controllers. The initial configuration is to the
Null Controller, which imposes no forces at all on the platform, the blue
subsystem labeled Plant. Open the Null Controller subsystem. This controller
accepts trajectory information, but outputs zero for the imposed force.

Signal logging captures the motion errors. You use this feature later to
analyze controller performance.

Viewing the Controller
To see the controller subsystem library:

1 Right-click the Null Controller block and select Link Options, then Go
To Library Block. The mech_stewart_controllers library opens with the
Template block highlighted.

You can set this enabled subsystem in three ways, and you use all three in
this case study: Null Controller, PID Controller, andH_inf Controller.

2 Open the controller subsystem in each setting to examine its block diagram.

4-40

Analyzing Controllers

3 Double-click the Template block to see the controller subsystem design.
The three possible subsystem settings are listed in the Template dialog.

Close the library model.

4 You select the subsystem configuration actually used for simulation back in
the original model, mech_stewart_control.

Right-click the Null Controller block and select Block Choice. The three
possible subsystems from the mech_stewart_controllers library are listed,
with Null Controller selected.

Configuring the Dynamics
To see the dynamical settings for the control design model:

1 Open the Plant subsystem and the orange Machine Environment block. In
the block dialog, locate the Parameters tab. The gravity vector points
in the negative z direction.

Then locate the Constraints tab. The Constraint solver type is Machine
precision, and the Use robust singularity handling check box is
selected. For this model, such a combination is the most robust.

Close the dialog and subsystem.

2 From the Simulation menu, open Configuration Parameters. Locate the
SimMechanics node, Diagnostics area. In this simulation, automatically
cut joints are marked.

Because the Stewart platform is a closed-loop machine, the simulation cuts
one joint in each closed loop formed by the two plates and a pair of legs
during the simulation and marked with a red X. See “Counting Degrees
of Freedom in the Stewart Platform” on page 4-8 and “Identifying the
Simulink and Mechanical States of the Stewart Platform” on page 4-21.

Close the dialog.

4-41

4 Motion, Control, and Real-Time Simulation

Simulating the Stewart Platform Without Controls
First simulate the Stewart platform without any control forces. The platform
moves under the influence of gravity and initial conditions only. The reference
trajectory is irrelevant because it is not used to generate any control forces.

To watch the natural or uncontrolled motion of the Stewart platform:

1 Open the Scope block. The Scope window displays three measurements:

• Position of the top plate CG

• Control errors

• Control forces applied to move the legs

2 Start the model. Track the falling platform by watching the Top Plate
Position graph in the Scope window. Because the controller does nothing in
this version of the model, the control errors and forces are not important.

Improper and Biproper PID Controllers
Now change the model to control the Stewart platform’s motion with the
linear proportional-integral-derivative (PID) feedback system.

The initial controller settings are discussed in “Modeling Controllers” on
page 4-15 and “Initializing the Stewart Platform” on page 4-18. Here you
implement two versions of this controller, improper and biproper. See
“Analyzing the PID Controller Response” on page 4-46 for more.

4-42

Analyzing Controllers

Switching to the PID Controller Subsystem
Switch the model’s controller subsystem by right-clicking on the (green)
control subsystem block, selecting Block Choice, then PID Controller. The
block name changes from Null Controller to PID Controller. Open it.

Stewart Platform PID Controller Subsystem

This is the PID linear feedback control system, a copy of the original
subsystem contained in the mech_stewart_controllers model library. The
control transfer function has the form Ki/s + Kds + Kp. The control gains Ki,
Kp, and Kd in their respective blocks reference the variables Ki, Kp, Kd defined
in your workspace. Check their initialized values:

Ki, Kp, Kd
Ki = 10000
Kp = 2000000
Kd = 45000

Simulating the Controlled Motion
Simulate the Stewart platform with the PID controller.

1 Open the Scope and start the simulation.

2 Observe the controlled Stewart platform motion. The Scope shows how the
platform initially does not follow the reference trajectory, which starts in
a different position from the platform’s home configuration. The motion
errors and forces on the legs are significant. Observe also that the leg
forces saturate during the initial transient.

4-43

4 Motion, Control, and Real-Time Simulation

The platform moves quickly to synchronize with the reference trajectory,
and the leg forces and motion errors become much smaller.

Stewart Platform Motion and Forces with the PID Controller

Finding the Numerical Derivative of the True and Reference
Trajectories
The PID control law requires the time derivative of both actual and reference
motion. For greater realism, the Stewart platform plant uses a Body Sensor
block to detect only the actual position of the platform, leaving the velocity
to be computed by the controller. Finding the reference and actual velocities
requires taking numerical derivatives of the reference and actual trajectories,
which each consists of the six leg lengths as functions of time.

The model gives you two ways to do this. You can switch the numerical
derivative configurable subsystem to implement either. This block is linked to
the library mech_stewart_control_deriv, which contains the two subsystem
implementations. Right-click the numerical derivative (orange) block and
select Block Choice, then Derivative Block or Filtered Derivative.

• The first choice (improper) uses the Derivative block of Simulink. This
block gives accurate but idealized results. This choice is the default.

4-44

Analyzing Controllers

• The second choice (biproper) applies a filter of Transfer Fcn blocks in the
Laplace domain before transforming the signals back to the time domain.
This choice is closer to a realistic implementation.

The transfer function has canonical form As/(s+A). The transfer function acts
as a low-frequency bandpass filter to damp out details of the derivative on
time scales shorter than 2π/A. The Transfer Fcn blocks use the workspace
variable A representing A. Its value should be set to about 50 to 100 times
the motion frequency variable freq. Keep the Transfer Fcn numerators and
denominators in their canonical form in terms of A. The initialized value is A
= 100*π.

The transfer function filtered derivative is more realistic, at the cost of
some inaccuracy due to transients. Vary the filtered derivative behavior by
adjusting A in your workspace. The unwanted transient behavior is worse
for smaller A.

Stewart Platform Motion and Forces with PID Controller (Filtered Derivative)

Simulating at Symmetric Equilibrium
The Stewart platform’s home configuration is the symmetric equilibrium of
the top plate. Later in this study, you need to simulate the platform at rest.
If you start the model in this state, the control forces are zero and the top
plate does not move.

4-45

4 Motion, Control, and Real-Time Simulation

Keep the Filtered Derivative option and simulate this static trajectory.

1 Open the Leg Reference Trajectory subsystem. Locate the Trajectory
Switch to the right. Double-click the Switch to the down position.

The reference trajectory now specifies a static reference trajectory: a
platform remaining still with all legs at the same constant length.

2 Close the subsystem and start the simulation. Observe the static platform
in either the Scope, the visualization window, or both.

3 After rerunning the model, reset the Trajectory Switch back to up.

Analyzing the PID Controller Response

Note This section requires Control System Toolbox.

You can learn more about the effect of the PID controller on the Stewart
platform’s motion with two control theory techniques, the s-plane and the
frequency response, both based on the Laplace transform. See “References”
on page 4-5 and the documentation for Control System Toolbox for more
information.

Improper PID Controller: Theory
The PID control law is an output-input relation whose transfer function is

C s K K s K s K s K K s K s s s s sp i d p i d() () (-)(-) s = + + = + + = + −
2

where the gains K are real and nonnegative. The third version is the
zero-pole-gain form.

4-46

http://www.mathworks.com/products/control/
http://www.mathworks.com/access/helpdesk/help/toolbox/control/

Analyzing Controllers

C(s) is improper, rising without limit for large s and having more zeros
(two) than poles (one, at s = 0). The poles determine controller response for
longer times. The zeros modify how fast the controller approaches the steady
state, especially if a zero approaches and nearly cancels a pole. Obtain the
steady-state by multiplying the transfer function by s, then letting s vanish.

In the PID control law, the Ki gain is the steady-state response. The transient
behavior is most strongly influenced by the highest power of s (the Kd term),
then by the next power of s (the Kp term), and so on. As you vary the gains,
different behaviors emerge.

• If Ki vanishes, the response is all transient, with a null steady state. One
zero coincides with and cancels the pole. The other zero is -Kp/Kd.

• If Kd vanishes, only one zero remains, at s = -Ki/Kp.

• If 4KdKi > Kp
2, the zeros become complex and move off the real s-axis.

• If the gain is more in higher powers of s, the transient response is stronger.

• If the gain is more in the lower powers of s, the transient response is
suppressed and the steady-state response emerges more quickly.

Filtered Derivative and Proper PID Controller: Theory
The simple PID control law, with an ordinary derivative, gives rise to an
improper transfer function C(s). Changing the ordinary derivative to a filtered
derivative softens the behavior of the modified controller c(s) at large s.

c s K K s K As s A K s s A K s A K As s sp i d p i d() () [() ()] (= + + + = + + + + +2 AA

K K A s K K A s K A s Asp d i p i

)

[() ()] () = + + + + +2 2

This function is biproper, having two zeros and two poles, respectively, at

s A

s
K K A

K K A

K K A

K K A
p i

d p

d p

p i

0 0

2
1 1 4

=

= −
+

+()
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

± −
+
+

⎛

⎝
⎜⎜

⎞

⎠
±

, -

⎟⎟⎟ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

K
K K A

i

p i

Recover the improper control law C(s) by letting A → ∞.

4-47

4 Motion, Control, and Real-Time Simulation

PID Controller: Alternative Forms
Because C(s) is improper, Control System Toolbox cannot fully analyze the
simple PID controller response. However, the filtered derivative alternative
c(s) yields results similar to the ordinary derivative. A complete analysis
of c(s) is possible.

With the tf command, define linear, time-invariant (LTI) transfer function
objects for C(s) and c(s), then analyze them with the LTI Viewer.

numC = [Kd Kp Ki]; % Improper numerator
denomC = [1 0]; % Improper denominator
cImproper = tf(numC,denomC) % Improper transfer function

numc = [Kd*A+Kp Kp*A+Ki Ki*A]; % Biproper numerator
denomc = [1 A 0]; % Biproper denominator
cBiproper = tf(numc,denomc) % Biproper transfer function

You can also convert C(s) and c(s) to state-space and zero-pole-gain (ZPK)
forms. The latter is especially useful. Enter help zpk for more details.

zpk(cImproper) % Convert cImproper to zero-pole-gain
zpk(cBiproper) % Convert cBiproper to zero-pole-gain

The helpful zpkdata function extracts the zeros, poles, and gain from a
ZPK-form controller.

PID Controller: LTI Analysis
Now open the LTI Viewer interface by entering ltiview.

1 Select the File menu, then Import. The Import System Data dialog
opens.

In the Import from area, select the Workspace option and, under
Systems in Workspace, both entries, cImproper and cBiproper. Click
OK.

2 Right-click within the LTI Viewer plot window to view the analysis options
under Plot Types and Characteristics.

4-48

Analyzing Controllers

With c(s), you can use all the LTI Viewer features. Your valid options for
analyzing C(s) are limited.

• The Bode and Bode Magnitude plots show the frequency response C(s)
for imaginary s = jω.

• The Pole/Zero plot shows the location of the poles and zeros of C(s).

3 Display both the C and c systems simultaneously and compare the Bode
and Pole/Zero plots.

The Bode plots are similar for small s (long times). For large s (short
times), C(s) rises without limit, while c(s) levels off and results in better
controller behavior.

The Pole/Zero plots show that C(s) has one pole and c(s) two poles, the
common one being 0. Both transfer functions have two zeros. You can
locate all of these with the pole and zero functions. Note that one
zero is almost identical between C(s) and c(s), while the other is shifted
dramatically. This shift changes and softens the transient behavior of c(s)
compared to C(s) for larger s (short times).

4 Examine the Step and Impulse plots for c(s) as well. These plots indicate
the time behavior of the c(s) controller for stepped and impulsive inputs.

4-49

4 Motion, Control, and Real-Time Simulation

Designing and Improving Controllers

In this section...

“Creating Improved Controllers for the Stewart Platform” on page 4-50

“Designing a New PID Controller” on page 4-51

“Trimming and Linearizing the Platform Motion” on page 4-53

“Improving the New PID Controller” on page 4-59

“Synthesizing a Robust, Multichannel Controller” on page 4-66

Creating Improved Controllers for the Stewart
Platform

Note Before working through this study, consult the control design
preliminary, “About Controllers and Plants” on page 4-35, and work through
the first control design study, “Analyzing Controllers” on page 4-39. This
study builds on the results and concepts of the latter.

In addition to Simulink and the SimMechanics product, this study use these
products:

• Control System Toolbox

• Simulink Control Design

• Robust Control Toolbox

This second control design case study begins by showing you how to create
and optimize a new PID controller. It starts with the creation of a new PID
controller ab initio, locates a steady state and linearizes the platform’s motion
about this equilibrium, and adjusts the linearized platform dynamics to
optimize the new PID controller. The study ends by introducing multivariable
synthesis as a step beyond PID control, implementing a more complex and
realistic multivariable controller and comparing its performance with the
new PID controller.

4-50

http://www.mathworks.com/products/control/
http://www.mathworks.com/products/simcontrol/
http://www.mathworks.com/products/robust/

Designing and Improving Controllers

Designing a New PID Controller

Note This section requires Control System Toolbox. Saving intermediate
model versions and workspace values is recommended.

The PID controller gains set by the initialization script are preoptimized.
The preceding case study, “Analyzing Controllers” on page 4-39, uses these
gain values as examples.

In the rest of this study, you follow a more realistic scenario where the gains
are not initially known and you use control design tools in the MATLAB
environment to create and optimize a filtered PID controller.

Making a First Guess for the Controller Gain
Make an initial guess for the integrator (I) gain Ki with dimensional analysis.
Ki has dimensions force/length/time.

• An initial guess for the force is one-sixth the weight of the platform and legs.

• An initial guess for the length is range of vertical motion in the reference
trajectory.

• An initial guess for 1/time is the natural frequency, π/2π = 0.5 Hz.

Thus an initial guess for the integrator gain is

Ki = 0.5*9.8*(top_mass/6+(upper_leg_mass+lower_leg_mass))/0.3

Ki = 7.1680e+003

Making a First Guess for the Controller Force
The initialization script sets the workspace variable initCondI to the value
needed to put the platform in a symmetric equilibrium in the initial state.
With a new Ki value, you need to recalibrate this initial condition.

initCondI = ...
(upper_leg_mass+lower_leg_mass+(top_mass*1.3/6))*9.81/Ki

initCondI = 0.6839

4-51

http://www.mathworks.com/products/control/

4 Motion, Control, and Real-Time Simulation

Modifying the Null Controller with a Constant Force
Start by turning off the PID controller and applying a constant force to the
platform.

1 Right-click the controller subsystem. Select Block Choice > Null
Controller.

2 Right-click Null Controller again. Select Link Options > Go To
Library Block.

The configurable subsystem library mech_stewart_controller opens.

3 Under Edit, select Unlock Library. Open the Null Controller template
subsystem.

4 In the subsystem, between the Gain and Force (Output) blocks, insert an
Integrator block.

5 Open the Integrator dialog. For Initial condition, enter Ki*initCondI.
Click OK.

6 Close Null Controller. Save and close the mech_stewart_controller library.

7 Back in mech_stewart_control, update the diagram (Ctrl+D).

8 At the command line, enter Ki*initCondI.

This is your first guess for the controller force in one leg: the product of
your PID integrator (I) gain guess and your controller initial state guess.

4-52

Designing and Improving Controllers

Simulating the Platform with the Constant Force
Now observe the effect of this constant force on the platform.

1 In the Leg Reference Trajectory subsystem, set the Trajectory Switch
position to down.

2 Open the Scope and start the simulation. The control force is less than the
platform weight. The platform accelerates downward.

Trimming and Linearizing the Platform Motion

Note This section requires Control System Toolbox and Simulink Control
Design. Saving intermediate model versions and workspace values is
recommended.

A critical step in control design is to understand the response of a plant being
controlled to small disturbances in its motion [5]. This step requires

• Trimming the platform, or finding an operating point. This is a time
trajectory satisfying certain prior conditions that you specify.

Here you search for the simple, useful operating point of symmetric
equilibrium, where the platform does not move.

• Linearizing the platform motion about the operating point.

You save the results of the linearization to use in the next section,
“Improving the New PID Controller” on page 4-59.

For More About Trimming
As described in “Trimming and Linearizing Through Inverse Dynamics” on
page 4-24, you can trim SimMechanics models in many ways. Control System
Toolbox and Simulink Control Design provide linear analysis tools richer and
more powerful than what Simulink and SimMechanics software alone offer.

4-53

http://www.mathworks.com/products/control/
http://www.mathworks.com/products/simcontrol/
http://www.mathworks.com/products/simcontrol/

4 Motion, Control, and Real-Time Simulation

Setting Up the Model for Trimming
Now set up the model for trimming. In Trimming mode, the model’s
mechanical states are the 40 constraints that reduce the 52 free (forward
dynamics) states to the 12 independent states.

1 Make sure the model observes these settings.

a Keep the controller subsystem Block Choice set to Null Controller
and the derivative type to Filtered Derivative.

b Keep the Trajectory Switch down (static trajectory) in the Leg Reference
Trajectory subsystem.

2 Reset the SimMechanics analysis mode to trimming.

a Open the Plant subsystem. Double-click the orange Machine
Environment block. Locate the Parameters tab.

b For Analysis mode, change the pull-down menu to Trimming. Click OK
and close the subsystem.

3 Observe the trimming output blocks that have appeared in the upper left of
the main model.

Locating an Operating Point by Trimming
Next, locate an operating point for the Stewart platform plant.

1 Select linearization points in your model as follows. Right-click, in turn,
on each of the Simulink signal lines defining the input and output of the
Plant subsystem:

• Leg Forces (input)

• Pos (output)

On each signal line’s right-click menu, under Linearization Points, select

• Both Input Point and Open Loop for the input line

• Both Output Point and Open Loop for the output line

4-54

Designing and Improving Controllers

Choosing the open-loop property for these signals breaks the feedback loop
from controller to plant back to controller. The plant instead takes a given
set of externally imposed controller forces.

2 Then, from the model menu bar, select Tools > Control Design > Linear
Analysis. The Control and Estimation Tools Manager window opens.

3 To the left of the Manager window, select the Operating Points node.
Then, to the right, select the Compute Operating Points tab. Click the
Sync with Model button at the bottom of the tab.

The default subtab is States. The Steady State check boxes are selected
by default. This choice searches for a plant operating point where the
platform is at rest relative to its initial configuration.

4 Examine the states by scrolling down in the States window.

• There are six states associated with the null controller Integrator block.

4-55

4 Motion, Control, and Real-Time Simulation

Clear the Steady State check boxes for these states. The trimming will
not hold the controller signal as fixed.

• Below these six are twelve states associated with the Transfer Fcn blocks
in the Filtered Derivative subsystem.

Free them from being fixed by clearing their Steady State check boxes.
Make their values (0) known by selecting their Known check boxes.

The rest of the states are associated with the positions and velocities of the
Stewart platform leg joints. Only six of these states are independent. The
others are constrained. Leave their settings as the defaults.

5 Move to the Outputs subtab. Under Output Specifications, select the
Known check box (the topmost check box in that column). This action
specifies all outputs, the state deviations from the desired operating point.
There are 40 states (constraints) in Trimming mode.

The output values are specified in the Value column. The values are all
zero, indicating that all constraints on states (the specifications of the
operating point) must be satisfied within tolerance.

6 From the Manager window menu bar, select Tools > Options. The
Options window opens. Select the Operating Point Search tab.

In the Optimization Method area, select Nonlinear least squares in
the Optimization Method menu.

4-56

Designing and Improving Controllers

Leave the other defaults. Click OK. The Options window closes.

7 Back in the Control and Estimation Tools Manager, click the Compute
Operating Points button at the bottom of the Compute Operating
Points tab.

The Computation Results subtab indicates the progress of the trimming.
When finished, it should indicate that the operating point specifications
were successfully met.

In theOperating Points node to the left, a newOperating Point subnode
appears, Operating Point, containing the results of this trimming.

Interpreting and Saving the Operating Point
Examine and save the operating point results.

1 Click Operating Point. Look at the States and Outputs tabs.

Under Outputs, the Desired dx values (if not marked N/A) are zero. For
the mechanical states (constraints), the Actual dx values (deviations from
the requested operating point) are zero within tolerance.

This is not true for the Controller states, which you did not require to
vanish. The Filtered Derivative states are all zero.

2 Save this operating point by right-clicking Operating Point and selecting
Export. Except for the name, leave the defaults.

For Variable Name, enter oppoint_PLANT. Click OK.

You now have a workspace object (opcond.OperatingPoint class) called
oppoint_PLANT representing the plant holding still at the start of
simulation (t=0). Retain this object for later use.

3 Examine its states by entering

oppoint_PLANT % List plant states at t=0

4 Reset the controller initial condition to the new operating point.

initCondI = oppoint_PLANT.States(1).x(1);

4-57

4 Motion, Control, and Real-Time Simulation

Linearizing the Platform Motion at the Operating Point
Now switch the model back to Forward Dynamics mode. The mechanical
states are now the 52 tree states corresponding to the uncut joint primitives.

1 Open the Plant subsystem, then its orange Machine Environment block.
Locate the Parameters tab.

2 In the Analysis mode pull-down menu, select Forward Dynamics. Click
OK and close the subsystem.

Then linearize the plant motion about the operating point you specified in
earlier. Return to the Control and Estimation Tools Manager.

1 Select Tools > Options. In the Options dialog, select the Linearization
State Ordering tab.

Click the Sync with Model button at the bottom, then click OK.

2 Now select the Linearization Task node to left, then the Operating
Points tab. Select the Operating Point called Operating Point.

3 At the bottom of the tab, make sure the Plot linear analysis result in a
check box is selected. Then choose a plot type in the pull-down menu. For
example, pick Bode response plot.

4 Then click the Linearize Model button. The LTI Viewer opens with a
large family of Bode response plots.

For later reference, you can choose other response plot types by
right-clicking on one of the plots and, under Plot Type, selecting a
different plot, such as Bode, Step, or Impulse. (You do not need to go
back to Linearization and relinearize the model.)

Interpreting and Saving the Linearization Results
This plant linearization started with six inputs (the leg forces) and 12 outputs
(six leg positions and six leg velocities). The LTI Viewer displays 6 x 12 = 72
response plots. To view one plot individually,

1 Right-click any one of the 72 plots and select I/O Selector. The I/O
Selector dialog opens.

4-58

Designing and Improving Controllers

2 This dialog lets you to choose any response of one output relative to one
input. To see that plot in the LTI Viewer, click the corresponding black dot.

Each plot shows how one of the outputs (a position or velocity) responds to the
application of a small force in one of the input channels. Different plot types
(impulse, step, Bode, etc.) yield different aspects of the response.

Export the results of your linearization.

1 Select File > Export in the LTI Viewer.

2 Choose your model and give it a unique name (call it sys) under Export As.

3 Click Export to Workspace. The model is saved as an LTI object. The
variable class is ss, the canonical state space form used by Simulink.

Retain this LTI object for the next section, where you use it to improve the
PID controller.

Further Suggestions
You can apply these results to other controllers (see “Synthesizing a Robust,
Multichannel Controller” on page 4-66), as well as choose other operating
points.

Improving the New PID Controller

Note This section requires Control System Toolbox and Simulink Control
Design. Saving intermediate model versions and workspace values is
recommended.

To proceed with this section, you need to have completed the preceding
section, “Trimming and Linearizing the Platform Motion” on page 4-53.

In this section, you use the linearization results to create a controller to better
match the plant. This information allows you to convert open-loop information
about the controller and plant into closed-loop behavior of the coupled system.

4-59

http://www.mathworks.com/products/control/
http://www.mathworks.com/products/simcontrol/
http://www.mathworks.com/products/simcontrol/

4 Motion, Control, and Real-Time Simulation

A PID controller acts as the same controller on each of the platform legs. You
can improve the controller’s response to each leg’s motion by working with
the diagonal components of the plant response. These components represent
a leg’s motion response to the force acting on that leg. This control design
paradigm is single-in, single-out (SISO). By symmetry, designing the PID
settings with one of the leg’s control behavior optimizes them for the other five.

The SISO approach ignores coupling between the legs. The last section of this
study, “Synthesizing a Robust, Multichannel Controller” on page 4-66, tackles
multichannel coupling to achieve a more accurate controller design.

What You Need from Previous Sections
From the preceding section, “Trimming and Linearizing the Platform Motion”
on page 4-53, you should have these saved in your workspace:

• Linearized plant model as an LTI object (ss class) called sys

• Controller initial condition initCondI reset to the operating point

• Useful intermediate model versions and workspace variable MAT-files

Throughout this section, keep the derivative block as Filtered Derivative
and the PID controller as biproper.

Reducing the State Space with Minimal Realization
Many of the mechanical states in sys are constrained. Remove them with the
sminreal command. This reduction works with the structure of the sys,
rather than (like minreal) with the numerical properties of sys.

G = sminreal(sys); % Structural reduction of linearized sys

G now represents the reduced linearized plant.

Exploring PID Gains, Filtered Derivative, and Force Saturation
One way to get a feel for the effect of PID feedback control on the Stewart
platform’s motion is to vary the gains, frequency cutoff, and force saturation
systematically, while holding fixed the reference trajectory and the platform
initial conditions.

4-60

Designing and Improving Controllers

The larger Kd is relative to Kp and Ki, the more sensitive the controller is to
immediate changes in the reference signal. (The same is true of Kp relative to
Ki.) The derivative term emphasizes rapid change. On the other hand, if Kd is
small, the controller is more sluggish in response. The Ki term emphasizes
memory of motion errors past. A fundamental tradeoff of control design is

• A more responsive PID controller is also less stable against high-frequency
(short time-scale) disturbances such as noise.

• A more stable controller is less responsive to feedback.

For large filtering constant A, the biproper transfer function c(s) behaves
at small s almost exactly like the improper C(s). But as you reduce A, c(s)
behaves less like C(s). In the time domain, for smaller A, the controller c(s)
shows more transient deviation from the pure derivative behavior of C(s).

The PID controller also depends on the force saturation limit, set in the
workspace by force_act_max. Making the force saturation limit too small
means that the controller cannot actuate the legs sufficiently to make them
keep up with the reference trajectory signal. The platform motion moves
toward instability with a lower force saturation limit. Too low a limit
eventually yields motion that is unacceptably extreme or completely unstable.
Up to a point, you can compensate for a lower force saturation limit by making
the controller more responsive.

Analyzing the Plant Response with the SISO Design Tool
A better way to optimize the PID controller is to analyze the open- and
closed-loop machine response with the SISO design tool.

Open the SISO Design Tool by entering

sisotool(G(1,1)); % SISO design tool for first leg-leg pair

The design tool opens with a unity controller (compensator), C(s) = 1. Use
the Help menu for more information about the design tool, including how to
interpret the plot symbols.

The Root Locus Editor to the left shows the closed-loop CG/(1+CG)
response, the s-plane poles, zeros, and root-loci. The Open-Loop Bode

4-61

4 Motion, Control, and Real-Time Simulation

Editor to the right shows the open-loop CG plant response, including poles
and zeros.

The closed-loop response has eight poles, four on the left-half and four on the
right-half of the s-plane, the latter indicating instability. The open-loop Bode
plot displays the gain and phase margins.

SISO Design Tool with Stewart Platform Plant at Rest and Unity Controller

Designing a New Biproper PID Controller with the Plant
Response
To design a biproper PID controller, add two zeros and two poles and adjust
the overall gain. Observe these general rules for the poles and zeros:

• The numerator coefficients, including the overall gain, must be positive.
The easiest way to ensure this is for both zeros to have negative real parts.

• One pole must occur at zero. This corresponds to the integrator (I) part.

• The other pole must have negative real part.

To implement,

4-62

Designing and Improving Controllers

1 Select Compensators > Edit > C. The Edit Compensator C dialog
opens. Add poles and zeros. Click OK. The dialog closes.

2 In the root-locus plot, you can move controller and closed-loop poles and
zeros around by dragging them with your mouse. As you move closed-loop
poles, you also change the overall controller gain. Be sure to leave the
initially stable closed-loop poles in the left half-plane.

In the Bode editor, you can move open-loop (controller) poles and zeroes by
dragging them. You can also change the gain and phase margins.

3 The SISO design tool controller form is κ(1+αs)(1+βs)/s(1+γ]s). The overall
control gain κ is Ki in this form.

For Ki, use the value of your first guess found previously in “Designing a
New PID Controller” on page 4-51.

Optimizing the New Biproper PID Controller with the Plant
Response
To optimize your controller, change its response to suppress undesirable and
enhance desirable feedback. The objectives, typical in control problems, are a
high-gain response at low frequencies to achieve tracking performance and a
diminishing response at high frequencies to limit the controller’s sensitivity to
plant variations and noise.

The platform motions have low bandwidth, typically only a few Hertz (Hz).
The system should have strong response up to a few Hz (ω = about 10 rad/s),
then falling response for higher frequencies.

One controller pole must always remain at zero. Five system poles have
positive (unstable) real parts, a result of the first leg coupling to the other
five. You cannot eliminate these in a SISO analysis.

Improve the controller by

• Making the nonzero controller pole more negative. This increases A and
increases the phase margin while decreasing the gain margin.

• Improving transient response by adjusting the controller zeros.

4-63

4 Motion, Control, and Real-Time Simulation

• Lowering the gain margin by raising the overall Bode response. This
increases the overall controller gain κ = Ki.

Saving the Optimized New Biproper Control Law
Once you have a satisfactory controller, you can export the new optimized
biproper control law to the workspace and analyze it there to redefine the
filtered PID controller parameters Ki, Kp, Kd, and A.

Export the modified compensator from the SISO design tool.

1 Go to File > Export. Select Compensator. Rename it cBiproperOpt under
Export as.

2 Then click Export to Workspace.

cBiproperOpt is a zero-pole-gain form (LTI object of class zpk). For example,

cBiproperOpt

Zero/pole/gain:
6171074.4994 (s+15.51) (s+0.08378)

4-64

Designing and Improving Controllers

s (s+400)

Resetting the PID Gains and Derivative Cutoff
Extract the biproper PID controller parameters by inverting the zeros s±,
poles, and gain K. The standard zero-pole-gain form is

c(s) = K(s - s+)(s - s-)/s(s+A) = [(Kp + AKd)*s
2 + (Ki + AKp)*s + AKi]/s(s + A)

• A = the negative of the biproper nonzero pole

• The gains are:

Ki = Ks+s- , Kp = -[K(s+ + s-) + Ki]/A , Kd = (K - Kp)/A

Reset your workspace variables accordingly.

[z,p,k] = zpkdata(cBiproperOpt) % Extract ZPK data from cBiproper
A = -p{1,1}(2) % Extract nonzero pole
Ki = k*z{1,1}(1)*z{1,1}(2)/A % Extract Ki gain
Kp = -(k*(z{1,1}(1) + z{1,1}(2)) + Ki)/A % Extract Kp gain
Kd = (k - Kp)/A % Extract Kd gain

Checking the Symmetric Equilibrium
Check that the symmetric equilibrium is stable with your new controller.

1 Make sure the Trajectory Switch is set to down.

2 Update the diagram (Ctrl+D) and rerun the model.

A trim point is rarely exact. There is typically a small but nonzero motion
error as the platform relaxes toward equilibrium.

Simulating the Moving Platform and Capturing the Motion
Errors
Now test the platform motion with the moving trajectory and your new
retuned biproper control law.

1 Set the Trajectory Switch back to up.

4-65

4 Motion, Control, and Real-Time Simulation

2 Restart the model. You should see reasonable motion errors and leg forces,
except perhaps for an initial transient.

3 Capture the Motion Errors from the logged signals structure sigsOut.

pid_opt_TS = sigsOut.('Motion Errors'); % Record motion errors

Synthesizing a Robust, Multichannel Controller

Note This part of the study requires Control System Toolbox and Robust
Control Toolbox.

To complete this section, you need to have completed the preceding section,
“Improving the New PID Controller” on page 4-59.

The controllers you have designed so far in this and the preceding control
design studies are based on classical PID techniques, where each channel is
subject to the same control law and the control law is tuned one channel at a
time. This approach misses the cross-coupling, the effect that the force on one
platform leg has on the motion of the other legs.

In this section, you redesign the Stewart platform controller by using modern
techniques that take multichannel coupling into account and implementing a
robust H-infinity controller [6], [7].

What You Need from Previous Sections
From preceding sections, you should have these saved in your workspace:

• Reduced state space representation G of the plant

• Time series structure pid_opt_TS

Viewing the H-Infinity Controller
Before starting,

1 From its right-click menu, under Block choice, switch the controller
subsystem to H_inf Controller.

4-66

http://www.mathworks.com/products/control/
http://www.mathworks.com/products/robust/
http://www.mathworks.com/products/robust/

Designing and Improving Controllers

2 Make sure that the derivative subsystem remains set to Filtered
Derivative and the Trajectory Switch in the Leg Reference Trajectory
subsystem is set to up.

Examine the controller subsystem, which is implemented via state space.

Stewart Platform H-Infinity Controller Subsystem

Defining a Desired Loop Shape Response
Start by specifying a desired open-loop response |C*G(1,1)| and plot its
singular values. For example,

Lsd = zpk([],[-1000 0],612770) % Define desired loop shape

Zero/pole/gain:
612770

s (s+1000)

sigma(Lsd) % Plot singular values

4-67

4 Motion, Control, and Real-Time Simulation

View the closed-loop response generated by this loop shape by entering:

step(feedback(Lsd,1)) % Feedback step response

Desired Loop Shape: Singular Values

Synthesize and Reduce a Controller with the Desired Loop
Shape
Now create a controller using the desired loop shape and plant response:

[K_ls,CL,GAM,INFO] = loopsyn(G,Lsd); % Synthesize controller

Check the size of the controller by entering

size(K_ls) % Check size of loopsyn controller

The example controller has 48 states. It is usually impractical to implement
a controller of such high order and computational intensity. So try reducing
the controller to 24th order:

Kr_ls = reduce(K_ls,24); % Reduce controller order

4-68

Designing and Improving Controllers

To estimate how many states you can ignore (truncate), plot both the full
and reduced singular values

sigma(K_ls,Kr_ls) % Plot singular values

Full and Reduced Loop-Synthesized Controllers: Singular Values

Simulating the Robust Controller and Capturing Its Motion
Errors
From the synthesized loop shape, extract the matrices needed to define the
state space model used in the H_inf Controller subsystem.

[Ak,Bk,Ck,Dk] = ssdata(Kr_ls); % Extract state space model

Run the loop-synthesized controller model. Then capture the motion errors.

loopsyn_TS = sigsOut.('Motion Errors'); % Record motion errors

Plotting and Comparing the Results
Finally, compare the motion error data from the two controllers:

• Redesigned PID

• Robust loop-synthesized

4-69

4 Motion, Control, and Real-Time Simulation

At the command line, enter:

figure
plot(pid_opt_TS.Time,pid_opt_TS.Data(1,:),'r', ...

loopsyn_TS.Time,loopsyn_TS.Data(1,:),'b')
ylabel('Motion Errors','FontSize',16)
xlabel('t (seconds)','FontSize',16)
legend('Redesigned PID Controller','Loopsyn Controller')

Apart from the initial transient, the loop-synthesized controller performs
better than the redesigned PID controller. In this example, the late-time
robust controller motion errors are more than an order of magnitude smaller
and exhibit no oscillatory “ringing.”

Redesigned PID and Loop-Synthesized Control System Motion Errors

4-70

Generating and Simulating with Code

Generating and Simulating with Code

In this section...

“About the Stewart Platform Code Generation Examples” on page 4-71

“For More Information About Code Generation” on page 4-71

“Learning About the Model” on page 4-72

“Generating an S-Function Block for the Plant” on page 4-76

“Model Referencing the Plant” on page 4-77

“Generating Stand-Alone Code for the Whole Model” on page 4-80

About the Stewart Platform Code Generation
Examples

Note This study requires some experience with the code generation features
of Simulink. To complete it, you need to have Real-Time Workshop installed,
in addition to the SimMechanics product.

This case study leads you through a representative set of tasks related
to turning a Stewart platform model into generated code. After you read
the introductory sections, proceed with the case study tasks. All code
generation-related files and subdirectories are created in your current
MATLAB folder.

1 Generating an S-Function block for the plant

2 Model referencing the plant

3 Generating stand-alone code for the controller and plant together

For More Information About Code Generation
To learn more about generating code from Simulink models, consult the
documentation for Simulink and Real-Time Workshop.

4-71

http://www.mathworks.com/products/rtw/
http://www.mathworks.com/access/helpdesk/help/toolbox/rtw/

4 Motion, Control, and Real-Time Simulation

To learn more about SimMechanics code generation, see “Generating Code”
on page 2-38.

Learning About the Model
This study is based on these demo files, in addition to the initialization script
and function. Copy them into an empty folder before starting each case
study task.

File Purpose

mech_stewart_codegen Basic model

mech_stewart_codegen_plant Plant subsystem as separate
model

You use the second model file later for model reference in “Model Referencing
the Plant” on page 4-77.

Open the first model. Then update the model by pressing Ctrl+D at the
keyboard.

4-72

Generating and Simulating with Code

Solver and Sample Time Step Sizes
The model defines two time steps, dt1 and dt2. The model initializes both to
the same value, but you can make them different (see the table, Configuration
Parameters for Stewart Platform Code Generation on page 4-75):

• dt1 defines the fixed-step solver time step.

• dt2 defines the sample rate for the generation of the trajectory signals. It
must be an integer multiple of dt1.

Structure of the Model
The two major parts of the model are the PID controller and the plant. You
can generate code from the entire model or from only part of it. In this study,
you convert the plant subsystem to code in two ways, by an S-function block
and by model reference. You then generate stand-alone code from the whole
model.

Run the model before continuing with code generation. You can view
the Stewart platform motion by opening the Scope. You can also enable
visualization. (See the SimMechanics Visualization and Import Guide.)

Caution To convert a subsystem alone to code requires placing all of the
SimMechanics blocks (the blocks with the distinctive Physical Modeling
connector ports and Body Coordinate System ports) into the subsystem.
mech_stewart_codegen encapsulates all SimMechanics blocks in the Plant
subsystem.

Simulation Settings for Code Generation
Some of the Simulink and SimMechanics settings in mech_stewart_codegen
are different from the defaults.

From the model’s Format menu, check that these entries are selected:

• Port/Signal Displays > Wide Nonscalar Lines

• Sample Time Display > Colors

4-73

4 Motion, Control, and Real-Time Simulation

Other settings are optimized for code generation.

1 View the Plant subsystem parameters by right-clicking the subsystem and
selecting Subsystem Parameters, then close the dialog.

• Treat as atomic unit is selected.

• Minimize algebraic loop occurrences is selected.

2 Now view the Configuration Parameters dialog by selecting it from the
model’s Simulation menu. View the different nodes, then close the dialog.

• Solver node. The model uses a fixed-step solver. While S-function
Target does not require fixed-step solvers, most Real-Time Workshop
targets require fixed-step solvers.

• Data Import/Export node. Time, states, and output are selected for
data export.

• Outputs correspond to the ports connected to the outport signals.

Top Plate Position: translation and rotation (Port 1)

Errors: difference of reference and actual top plate positions (Port 2)

Leg Forces: control forces parallel to each Stewart platform leg (Port 3)

• The states represent the states of the controller and the plant. The
controller has Simulink states, and the plant has SimMechanics
mechanical states.

The model states are not identical to the system’s independent degrees
of freedom (DoFs). See “Counting Degrees of Freedom in the Stewart
Platform” on page 4-8 and “Identifying the Simulink and Mechanical
States of the Stewart Platform” on page 4-21.

4-74

Generating and Simulating with Code

Configuration Parameters for Stewart Platform Code Generation

Node Settings

Solver Solver options: Type: Fixed-step
Solver options: Solver: ode1 (Euler)
Fixed-step size: dt1 (5e-3 seconds)

Data
Import/Export

Time: tout
States: xout
Output: yout

Optimization Simulation and code generation: Inline
parameters selected (needed for Model Reference)

Model
Referencing

Minimize algebraic loop occurrences selected

Real-Time
Workshop

Target selection: System target file:ert.tlc
(no auto configuration)
(Embedded Real-Time Target)
Interface: Software environment: continuous
time selected
Interface: Verification: MAT-file logging
selected

SimMechanics Diagnostics: all cleared
Visualization: all cleared

3 Now open the Plant subsystem and its orange Machine Environment block.
Check the following settings, then close the dialog.

The constraint solver is set to stabilizing, a robust choice appropriate for a
fixed-step simulation of moderate computational cost. Robust singularity
handling is selected.

4-75

4 Motion, Control, and Real-Time Simulation

Machine Environment Settings for Stewart Platform Code
Generation

Tab Settings

Parameters Linear assembly tolerance: 1e-3 m
Angular assembly tolerance: 1e-2 rad

Constraints Constraint solver type: Stabilizing
Use robust singularity handling selected

Visualization Visualize machine selected

Generating an S-Function Block for the Plant
The S-function Target feature of Real-Time Workshop lets you generate an
S-function block for a subsystem. This block points to a (non-stand-alone)
auxiliary binary file that hides the original subsystem. You can then use the
S-function block in multiple instances in any Simulink model, including your
original one, without SimMechanics software.

1 Right-click on the Plant subsystem. Select Real-Time Workshop, then
click Generate S-Function in the submenu.

A new window opens, Generate S-function for Subsystem: Plant,
listing the workspace variables used in the subsystem. At this point, you
can make ordinary Simulink parameters tunable, but you cannot tune
SimMechanics parameters. See “Generating Code” on page 2-38.

2 Proceed with generating the code files by clicking Build in the tunable
parameter window. Follow the generation in the command window.

Two auxiliary subdirectories are created, as well as C source and header
files and a (non-stand-alone) linked binary. Each of these files has a name,
Plant_sf, derived from the subsystem name.

A new Simulink model window also appears, containing the new, reusable
S-function block named Plant that points to the linked binary. Rename this
block to S-Function Plant.

3 From the original mech_stewart_codegen model window, cut the Plant
subsystem. Paste it into the new, untitled window.

4-76

Generating and Simulating with Code

Save this new model, containing the S-function and subsystem blocks for
future use, as mech_stewart_codegen_plant_sfunc.

4 Copy the S-Function Plant block from the new untitled window into the
original model window. Connect the signal lines to the S-function block.

5 Now start the model with the new S-function block. This modified model
no longer requires SimMechanics software. The performance is about the
same as the original model with the subsystem.

Save the modified model for future use as mech_stewart_codegen_sfunc.

Model Referencing the Plant
Real-Time Workshop gives you another way to generate code for a subsystem.
Using the Model Reference feature, you can put the subsystem in a separate
model, then replace the subsystem block in the original model with a model
reference block that points to the new model holding the subsystem. For
mech_stewart_codegen, the plant subsystem is contained in the model file
mech_stewart_codegen_plant.

One advantage of model referencing is that it allows you to incrementally
compile parts of your model, one at a time. This feature saves significant time
when you generate code from large models.

Simulation Settings for Model Reference
Some settings in mech_stewart_codegen_plant differ from the defaults. Many
differ in the same way that mech_stewart_codegen does. Here are additional
settings in the Configuration Parameters of this model that differ from the
defaults.

4-77

4 Motion, Control, and Real-Time Simulation

Node Settings

Model Referencing Rebuild options for all referenced models:
Rebuild options: Never
Rebuild options for all referenced models:
Never rebuild targets diagnostic: None

Real-Time
Workshop

Interface: Code interface: Single output/update
function cleared

Setting Up and Running the Main Model for Model Reference
To reconstruct your model for model referencing,

1 In mech_stewart_codegen, cut the Plant subsystem.

Keep this subsystem for future use. From the preceding part of the study,
“Generating an S-Function Block for the Plant” on page 4-76, you have a
model, mech_stewart_codegen_plant_sfunc, with the subsystem. If you
have not already saved the subsystem here, do so now by pasting it in.

2 From the Simulink Ports & Subsystems library, drag and drop a Model
block into mech_stewart_codegen. Rename the block Model Reference
Plant.

4-78

Generating and Simulating with Code

3 Open the Model Reference Plant block dialog. In the Model name field,
enter mech_stewart_codegen_plant. (Note the default Simulation mode
is Accelerator.) Click OK.

Save the new, modified model as mech_stewart_codegen_modelref.

Stewart Platform with Control Reference Trajectory for Model Reference

4 In the toolbar of mech_stewart_codegen_modelref, click the Start button.

In the command window, watch the code generation for model referencing.
When it finishes, the simulation starts. Watch the simulation results by
opening the Scope block.

Running or updating the main model generates a code folder and a
non-stand-alone (linked) binary file called mech_stewart_codegen_plant_msf
from the referenced model. The model reference block in the referencing
model points to this binary. You can view the model reference code generation
in the command window each time you update the diagram. Once it references
the external plant model, double-clicking the Model Reference Plant block
opens that model.

Note In the model reference block (Model Reference Plant), this model uses
the default simulation mode, Model Reference Accelerator.

4-79

4 Motion, Control, and Real-Time Simulation

Generating Stand-Alone Code for the Whole Model
In this section, you generate a stand-alone executable from the original
Stewart platform model, mech_stewart_codegen, using Real-Time Workshop
and the Embedded Real-Time target. This executable is portable and
independent of MATLAB.

1 From the Tools menu in the model menu bar, select Real-Time
Workshop, then Build Model. The build process begins in the command
window.

Real-Time Workshop generates two auxiliary subdirectories, as well as a
stand-alone executable named mech_stewart_codegen.

2 Start the executable by entering

!mech_stewart_codegen

A MAT-file called mech_stewart_codegen.mat is created whenever you
run the executable. This file contains the output, state, and time data
exported from the model.

3 You can load this MAT-file into your workspace and examine its variables,
all distinguished by the rt_ prefix.

From the MATLAB Desktop Current Folder window, right-click
mech_stewart_codegen.mat and select Import Data. The Import
Wizard appears, listing the variables that were generated, at each time
step, by running the executable. These include:

• rt_tout: Simulation times

• rt_xout: States

• rt_yout: Outputs

4 Click Finish on the Import Wizard dialog. The variables are loaded into
your workspace.

Examine the variables in workspace and double-click each of the three. The
editor displays the variable values as arrays (in the two cases of outputs
and states, arrays as parts of data structures).

4-80

Generating and Simulating with Code

These variables include:

• The variable rt_tout containing the simulation times.

• The variable rt_xout containing the state signals. These states include
a six-column array representing the Controller subsystem states and a
52-column array representing the mechanical states of the Plant.

- The six controller states are the six leg positions integrated by the
Controller/Integrator block for PID control.

- The 52 mechanical states are discussed in “Identifying the Simulink and
Mechanical States of the Stewart Platform” on page 4-21.

• The variable rt_yout containing the output signals. These outputs are the
three output signals designated by the model’s output signal ports (Top
Plate Position, Errors, and Leg Forces).

4-81

4 Motion, Control, and Real-Time Simulation

Simulating with Hardware in the Loop

In this section...

“About Dedicated Hardware Targets for Stewart Platform Simulation” on
page 4-82

“For More Information About xPC Target Software” on page 4-83

“Files Needed for This Study” on page 4-83

“Adjusting Hardware for Computational Demands” on page 4-83

“Downloading a Complete Model to the Target” on page 4-85

“Configuring for Realistic Hardware” on page 4-90

About Dedicated Hardware Targets for Stewart
Platform Simulation

Note This study requires experience with code generation and dedicated
hardware deployment. To complete it, you need to have installed the following
products, besides MATLAB, Simulink, and the SimMechanics product:

• Real-Time Workshop

• xPC Target

Working first through “Generating and Simulating with Code” on page 4-71,
is strongly recommended.

A common step after generating and compiling code from a model is to
download the compiled executable to a computer dedicated to running just
that application. For a model with a control system, you can download the
complete model as a unit or separate the controller and plant into different
executables on different computers. You can also execute the controller part
as embedded code on a dedicated computer that controls an actual plant.
Such application deployments are known as hardware in the loop or rapid
prototyping [9].

4-82

http://www.mathworks.com/products/rtw/
http://www.mathworks.com/products/xpctarget/

Simulating with Hardware in the Loop

xPC Target software and Real-Time Workshop allow you to generate and
compile code from a SimMechanics model and download it to a computer with
an IBM PC-type processor. xPC Target software acts as another target within
Real-Time Workshop and requires a fixed-step solver. You can use xPC Target
software to implement controller-plant models in many configurations [10].

This case study outlines some model conversion-downloading applications
based on the Stewart platform modeled with SimMechanics blocks.

For More Information About xPC Target Software
Consult the xPC Target documentation for full instructions on downloading
and running executable code in different configurations.

Files Needed for This Study
This study requires mech_stewart_xpc, as well as the initialization script
and function.

Adjusting Hardware for Computational Demands
Simulation with a fixed simulation time is subject to the basic tradeoff
between accuracy and speed. (See “Improving Performance” on page 2-32.)
You can make a simulation more accurate by reducing its step size, but at the
expense of creating more time steps and slowing down the real clock time.
You can speed up the simulation by increasing the time step size, but you risk
losing enough accuracy that the simulation fails to converge.

Real-Time Simulation Tradeoff
A typical requirement for code running on dedicated processors is that the
simulation run in real time. That is, the compiled code should run with

• A finite number of steps (requiring fixed-step solvers)

• Execution time no longer than the physical time being simulated

These requirements are particularly critical for controller code.

4-83

http://www.mathworks.com/access/helpdesk/help/toolbox/xpc/

4 Motion, Control, and Real-Time Simulation

With SimMechanics models, the accuracy-speed tradeoff is acute.
SimMechanics simulation is computationally intensive and become even more
so the more closed loops and constraints you add.

• With dedicated processor execution, reducing the step size ultimately leads
to processor overload. The processor needs more clock time to execute a
step than the solver time step allows.

• In SimMechanics simulations, convergence failure resulting from too large
a time step typically appears as a failure of your simulation to respect
constraint tolerances, assembly tolerances, or both.

Simple SimMechanics models require central processor speeds in the
mid-hundreds of megahertz (MHz) range. More complex models such as the
Stewart platform (with 36 degrees of freedom, as well as 5 independent closed
loops and 40 constraints arising from cutting those loops) demand more
processor speed, starting in the low gigahertz (GHz) range.

Mitigating the Real-Time Simulation Tradeoff
You have two ways to alleviate the conflict between accuracy and speed in
real-time simulation.

• Increase the processor speed. This allows you to reduce the solver step size
while keeping the clock time unchanged.

• Break up a complete model into parts, each simulated by its own model
downloaded to and executed on a different processor.

Both approaches are complicated by additional factors, such as memory
caching and bus speed. Real-time simulation distinguishes between the
sample time in signal buses and the solver step size.

Caution Sample time must be a positive integral multiple of solver step size.
For SimMechanics models, avoid making sample time larger than step size to
prevent simulation convergence failures.

4-84

Simulating with Hardware in the Loop

Downloading a Complete Model to the Target
As a trial of running the Stewart platform simulation on dedicated hardware,
here you convert a model to code, then download it and run it on an external
PC-type computer. The model requires a processor of speed approximately 2
GHz or faster, and a separate target computer monitor.

Consult the xPC Target documentation for details on preparing the target
computer, establishing the host-target connection, and interacting with the
target from the host.

Setting Up the Target Computer and Host-Target Connection
The results here were obtained with host and target PC-type computers, each
with a 3 GHz Pentium 4 processor and 1 gigabyte of RAM, communicating
with each other by an RS-232 connection.

To set up the connection and start the target, you need an RS-232 cable and a
blank, formatted floppy disk. The target requires a floppy disk drive. You can
observe target simulation on a target monitor, your host monitor, or both.

1 Connect the host and target computer to one another with their respective
RS-232 ports and a cable.

2 From MATLAB, prepare an xPC Target boot floppy disk.

3 Insert the prepared xPC Target boot disk into the target PC floppy drive.
Start the target computer.

4 After the target has finished booting, confirm the host-target connection.

Examining and Running the xPC Model — Data Type
Conversion
For this example, you use a variant of the code generation model presented in
the preceding study, “Generating and Simulating with Code” on page 4-71.

• The model contains xPC Scope blocks for observing the simulation results
later. The Scope type for each is Target. Thus they will appear on the
target PC after you download the compiled code.

4-85

http://www.mathworks.com/access/helpdesk/help/toolbox/xpc/

4 Motion, Control, and Real-Time Simulation

• The controller and plant work with the default Simulink 64-bit floating
double data type. To test the effect of the type conversion needed for
passing signals on a hardware bus, the model also contains subsystems that
convert these floating doubles to fixed-point integers, then back to doubles.

The data conversion truncates the controller-plant data and changes the
simulation behavior somewhat. It is critical to test the impact of such
changes before deploying the code to hardware.

1 Open this model, mech_stewart_xpc. Update the diagram (Ctrl+D). The
vector signals now appear as wide lines and display their data types.

Stewart Platform with Control Reference Trajectory for xPC Target™
Simulation

2 Open the Force Conversion and Length Conversion subsystems. Each
subsystem converts a vector signal from floating doubles to 16-bit integers
(typical of hardware buses) and back to doubles. These subsystems mimic
the effect of hardware buses communicating between controller and plant.

4-86

Simulating with Hardware in the Loop

Before the data are converted to integer format, they must be converted
from floating to fixed point, truncating the floating double signals. The
Data Type Conversion blocks that change doubles to fixed points apply
scaling to ensure that information lost to truncation is “small,” as defined
by the force and leg length numbers typical of this simulation. These
scalings are set in the Data Type Conversion block dialogs.

3 Close the Conversion subsystems. Open the Scope.

4 Run the model and observe the motion. Afterward, close the Scope.

The difference between this Stewart platform simulation and earlier ones
is clear in the Leg Forces scope trace, which exhibits a small level of “noise”
after the initial transient has passed. This “noise” is due to data truncation
when the floating doubles are converted to fixed point.

4-87

4 Motion, Control, and Real-Time Simulation

Generating and Downloading Code from the xPC Model
In the next steps, you convert the model to code and download it to the target.

1 Confirm the solver step size (dt1) and sample time (dt2) by entering

dt1, dt2

at the command line. The values are 5.0 milliseconds (ms).

2 Check the code generation target selection in Configuration Parameters,
under the Real-Time Workshop node, Target selection > System
target file. The target selection is xpctarget.tlc.

Under the Real-Time Workshop node, check the xPC Target options
entry. Leave these default settings.

3 On the Real-Time Workshop tab, click Build to start code generation.

Follow the progress on the command window, as Real-Time Workshop
generates and compiles the model, then downloads it to your target

4-88

Simulating with Hardware in the Loop

computer. When the download is complete, you see the four empty xPC
Target scope windows on the target monitor.

Running the xPC Stewart Platform Model on the Target
The xPC Target interface creates an object called tg that allows you to control
the application on the target machine.

1 Using the xPC Target interface, start the target application.

The target computer monitor displays the execution. In the command
window, the xPC Target interface summarizes the execution results.

2 Stop the target application. The command window displays the execution
summary. The target scopes display the simulation results.

Viewing the Target Simulation with xPC Scopes
xPC Target software allows you to observe simulation in various ways. The
xPC Target documentation explains the details.

• In the first run, you observed target-type xPC scopes on the target monitor.

• You can change the Scope type of one or more xPC scopes to Host and
observe them on your host computer instead.

• The xPC Target interface also allows you to connect and display such scopes
while the simulation is running. You can make connecting and displaying
scopes during simulation easier by changing the stop time to infinity (inf).

Adjusting the Step and Sample Times — Testing for CPU
Overload
You can make your simulation more accurate by reducing the solver step size.
But by requiring more steps, you also make the simulation more intensive.
If the solver step size drops below the task execution time (TET), the target
processor cannot keep up with the simulation and suffers CPU overload.

The xPC Target summary in the command window indicates if CPU overload
has occurred when you start or stop target object (tg) execution.

Test for CPU overload by reducing dt1 and dt2.

4-89

4 Motion, Control, and Real-Time Simulation

1 Enter

dt1 = 0.0025; dt2 = 0.0025;

2 Build and download the generated code again.

3 Start the target application.

You can understand how close to, or how far into, CPU overload your model is
by comparing the TET with the solver/sample time.

• If the TET value is smaller than the sample/solver time, the target
processor is able to keep up with the solver.

• If the TET value is larger than the sample/solver time, the target processor
cannot keep up with the solver. CPU overload halts target execution.

You can keep reducing the solver/sample time until you cause CPU overload.
This point is the limit of your target processor with this model. You can work
around CPU overload by

• Using a faster processor. The ratio of TET to sample time indicates roughly
how much faster the processor needs to be.

• Increasing the solver/sample time. Be sure not to increase it too much, to
avoid simulation convergence failures.

See “Adjusting Hardware for Computational Demands” on page 4-83.

Configuring for Realistic Hardware
Typical goals of downloading compiled code to a dedicated computer are

• Simulating controller and plant in real time

• Embedding a discretized version of the controller code on a dedicated
computer that controls an actual plant

4-90

Simulating with Hardware in the Loop

Separating Controller and Plant — Bus Communication —
Discretization
Controller and plant communicate through a hardware bus configured with a
specific data protocol. The xPC Target block library contains communication
blocks based on a variety of data protocols matching common hardware buses.
In realistic applications, the controller is often already discretized (simulated
with discrete states) and requires no conversion from floating point.

The plant simulation remains continuous (not discrete) to better imitate the
actual physical system.

Caution You cannot use discrete states with SimMechanics blocks in your
model. Discretizing a controller requires separating controller and plant into
different models.

Hardware Configuration Possibilities
Choose a model and hardware configuration depending on your needs.

• Separate controller and plant into different subsystems that communicate
through a physical bus interfaced with xPC Target bus blocks, rather than
Simulink signal lines. To run such a model on a target requires the target
to have the corresponding hardware card and bus cable.

• Separate controller and plant into two different models that also
communicate through a physical bus interfaced with xPC Target bus
blocks. You then download the two models to two separate targets that
communicate through a bus cable connected to the corresponding hardware
cards.

Once you separate controller and plant into different models, you can
discretize the controller.

• Embed the controller on a dedicated target that controls an actual Stewart
platform. The target and platform communicate through a bus or other I/O
hardware corresponding to the blocks used in the controller model.

4-91

4 Motion, Control, and Real-Time Simulation

Mitigating Real-Time Trade-offs
Real-time simulations are restricted by the tradeoff between accuracy and
speed and limited by target execution time and maintaining convergence. You
need to ensure that your memory caching and bus, not just your processor(s),
are fast enough to cope with SimMechanics computational demands. See
“Adjusting Hardware for Computational Demands” on page 4-83.

4-92

Index

A
actuators

body 1-50
driver 1-62
initial condition 1-63
joint 1-56
stabilizing numerical derivatives 1-49
stiction 1-56
using 1-48

analysis modes
choosing 2-8

assembling joints. See joints
assembly tolerances

and solvers 2-12
defined 1-26
setting 2-12
violation of 2-27

B
base body 1-24
bodies

actuating 1-50
body coordinate systems 1-12
modeling 1-11
rigid 1-11
sensing 1-69

body coordinate systems
adding and deleting 1-17

Body CS ports 1-5

C
closed loops

choosing cut joint 1-46
constraint or driver block in 1-41
cutting 1-46
defined 1-46
disassembled joint in 1-34
marking automatically cut joint in 2-13

Stewart platform example 4-8
code generation

case study 4-71
restrictions 2-44
run-time parameters 2-40
SimMechanics and 2-38

computed force 1-70
connection lines 1-5
connector ports 1-5
constraint solvers 2-12
constraint tolerances

and solvers 2-12
defined 2-16
setting 2-16
violation of 2-30

constraints
automatic cutting of 1-46
directionality 1-40
holonomic 1-38
modeling 1-38
nonholonomic 1-38
redundant 2-14
rheonomic 1-38
scleronomic 1-38
sensing 1-71

control design
case study 4-35

cutting closed loops
automatic 1-46
marking cut joint 2-13

D
damper. See spring-damper
degrees of freedom

apparent vs. independent 1-89
counting 1-89
loss of 2-29
relative 1-19
rotational 1-20

Index-1

Index

spherical 1-20
Stewart platform example 4-8
translational 1-20
weld 1-20

derivative
stabilizing in actuator signal 1-49

disassembled joints. See joints
drivers

actuating 1-62
automatic cutting of 1-46
directionality 1-40
modeling 1-38
sensing 1-71

E
errors. See simulation, fixing errors
Euler’s equations 3-4

F
follower body 1-24
friction 1-51

pure kinetic friction 1-51
See also stiction

G
gravity

as external signal 2-7
setting in a machine 2-7

grounds
connecting to Machine Environment 1-10
ground point 1-9
grounded coordinate system 1-10
modeling 1-9

H
hardware-in-the-loop

case study 4-82

I
inertia tensor

defined 3-4
introduced 1-11
time-varying 1-53

initial conditions
setting 1-62

interface elements 1-79
internal forces

represented by force elements 1-74
via sensor-actuator feedback 1-78

Inverse Dynamics mode
finding forces from motion 3-7
setting up motion actuation 3-7
simulating in 3-8

J
joints

actuating 1-56
assembly restrictions 1-26
automatic assembly of disassembled 1-35
automatic cutting of disassembled 1-34
cutting, automatic 1-46
cutting, manual 1-46
directionality 1-24
disassembled joints 1-34
joint primitives 1-20
limits on motion 1-82
manual assembly of 1-26
massless connectors 1-30
modeling 1-20
primitive axis 1-23
primitive vs. composite 1-21
sensing 1-70

K
Kinematics mode

finding forces from motion 3-7

Index-2

Index

setting up motion actuation 3-7
simulating in 3-14
trimming in 4-24

L
linearization

and Kinematics mode 4-29
overview 3-32
with closed-loop machines 3-40
with open-topology systems 3-34

M
machine

dimensionality 2-7
distinguished in a model 2-2
representing with blocks 1-2

mass
defined 1-11
time-varying 1-53

massless connectors. See joints
mechanical settings

machine environment 2-2
simulation diagnostics 2-18

N
Newton’s equations 3-4

R
reaction force 1-70

S
sensors

body 1-69
constraint & driver 1-71
joint 1-70

signal lines 1-5

Simscape
default SimMechanics settings 2-5
editing modes 2-20
using mechanical elements with

SimMechanics 1-79
simulation

fixing errors 2-26
internal SimMechanics steps 2-24

Simulink
and constraints 2-14
and machine assembly 2-12
choosing solver 2-16
Configuration Parameters dialog 2-3
ports 1-5
setting solver tolerances 2-17
signal lines 1-5

singularities
defined 2-28
mitigating 2-34
setting robust handling 2-18
unrecoverable 2-34

spanning tree 1-86
spring-damper 1-74
states

Stewart platform example 4-21
Stewart platform

case studies 4-1
controlling 4-35
generating code for 4-71
hardware in the loop 4-82
modeling 4-13
overview 4-7
trimming 4-24

stiction 1-60
and solver tolerances 2-17
mixed static-kinetic friction 1-60
modeling 1-56
See also friction

subsystem
in SimMechanics 1-6

Index-3

Index

masking 1-8

T
tolerances. See assembly tolerances. See

constraint tolerances
topology

invalid 1-88
model 1-85
Stewart platform 4-8
validity of 1-87

trimming
with Kinematics mode 4-24

Trimming mode

simulating in 3-18
with constrained systems 3-26
with unconstrained systems 3-20

troubleshooting. See simulation, fixing errors

V
visualization

setting up 2-22

W
warnings

controlling warning messages 2-18

Index-4

	toc
	Modeling Mechanical Systems
	Representing Machines with Models
	About Machines
	About SimMechanics Models
	Comparison to Other Simulink Models

	Creating a SimMechanics Model
	Connecting SimMechanics Blocks
	Connection Lines
	Connector Ports

	Interfacing SimMechanics Blocks to Simulink Blocks
	Creating SimMechanics Subsystems
	Creating a Subsystem Automatically
	Creating a Subsystem Manually

	Creating Custom SimMechanics Blocks with Masks

	Modeling Grounds and Bodies
	About Bodies and Grounds
	Modeling Grounds
	Machine Environment Required for Each Machine
	World and Grounded Coordinate Systems

	Modeling Rigid Bodies
	About Body Blocks
	Creating a Body Block
	Determining Inertia Tensors for Common Shapes

	Working with Body Coordinate Systems
	Setting a Body CS’s Position
	Setting a Body CS’s Orientation
	Managing Body Coordinate Systems
	Creating Body CS Ports

	Modeling Degrees of Freedom
	About Joints
	Modeling Joints
	Joint Primitives
	Joint Types
	Joint Axes
	Joint Directionality
	Directionality of a Prismatic Joint. If the joint is prismatic,

	Assembly Restrictions

	Creating a Joint
	Directing Joint Axes
	Creating Actuator and Sensor Ports on a Joint
	Assembling Joints

	Modeling Massless Connectors
	Creating a Massless Connector
	Massless Connector Example: Triple Pendulum
	Massless Connector Example: Four Bar Mechanism

	Modeling Disassembled Joints
	Controlling Automatic Assembly and the Assembled Configuration
	Disassembled Joint Example: Four Bar Mechanism

	Constraining and Driving Degrees of Freedom
	About Constraints
	Types of Mechanical Constraints
	What Constraints and Drivers Do
	Directionality of Constraints and Drivers
	Solving Constraints
	Mitigating Constraint Singularities

	Restrictions on Using Constraint and Driver Blocks
	Constraint Example: Gear Constraint
	Visualizing the Gear Motion

	Driver Example: Angle Driver
	The Angle Driver Without a Driver Actuator
	Visualizing the Angle Driver Motion
	The Angle Driver With a Driver Actuator

	Cutting Machine Diagram Loops
	Rules for Valid Machine Diagram Loops
	Rules for Automatic Loop Cutting
	Specifying a Loop Joint for Cutting
	Displaying the Cut Joints
	For More About Disassembled and Cut Joints
	For More About Constraints and Drivers

	Applying Motions and Forces
	About Actuators
	Stabilizing Numerical Derivatives in Actuator Signals
	Examples of Numerical Derivatives of Actuator Signals

	Actuating a Body
	Body Actuator Example: Pure Kinetic Friction
	Applying Motions to Bodies

	Varying a Body’s Mass and Inertia Tensor
	Example: Simple Rocket

	Actuating a Joint
	Actuating a Joint Primitive
	Joint Actuator Example: Body Driver
	Joint Stiction Actuator Example: Mixed Static and Kinetic Fricti

	Actuating a Driver
	Specifying Initial Positions and Velocities
	Using JICA Blocks
	JICA Example: A Simple Pendulum

	Sensing Motions and Forces
	About Sensors
	Home Configuration and Position-Orientation Measurements

	Sensing Body Motions
	Sensing Joint Motions and Forces
	Sensing Constraint Reaction Forces
	Example: Linear Driver

	Adding Internal Forces
	About Force Elements
	Inserting a Linear Force Between Bodies
	Inserting a Linear Force or Torque Through a Joint
	Customizing Force Elements with Sensor-Actuator Feedback

	Combining One- and Three-Dimensional Mechanical Elements
	About Interface Elements
	How Mechanical Interface Elements Couple Motion and Forces Betwe
	Limitations on the Interfaced Simscape Mechanical Circuit

	Working with Interface Elements
	Example: Rotational Spring-Damper with Hard Stop

	Validating Mechanical Models
	Essential Tests for Model Validity
	Verifying Model Topology
	Machine Topology and Subsystems
	Determining a Machine’s Spanning Tree
	Determining the Validity of a Spanning Tree
	Examples of Invalid Machine Topologies

	Counting Model Degrees of Freedom
	Degrees of Freedom in Subsystems
	Finding Independent Degrees of Freedom
	The Role of Joint Stiction Actuators
	DoF Example: Double Pendulum
	DoF Example: Four Bar Mechanism

	Running Mechanical Models
	Configuring SimMechanics Models in Simulink
	SimMechanics and Simulink Options
	Distinguishing Models and Machines
	Machine Settings via the Machine Environment Block
	Model-Wide Settings via Simulink and Simscape Software
	SimMechanics Default Settings Not Changed If SimMechanics Blocks

	Configuring Methods of Solution
	About Mechanical and Mathematical Settings
	Defining Gravity
	Setting a Constant Gravitational Acceleration
	Introducing Gravity as an External Simulink Signal

	Choosing Your Machine’s Dimensionality
	Requirements for Two-Dimensional Simulation
	Code Generated from Two-Dimensional Models
	Blocks That Require Three-Dimensional Simulation

	Choosing an Analysis Mode
	Forward Dynamics Mode
	Trimming Mode
	To Linearize a Machine’s Motion
	Inverse Dynamics Mode
	Kinematics Mode

	Hierarchy of Solvers and Tolerances
	Controlling Machine Assembly
	How Assembly Tolerances Work

	Maintaining Constraints
	Origins of Mechanical Constraints
	Projecting the Motion on to the Constraint Manifold
	Identifying and Eliminating Redundant Constraints
	Comparing and Choosing Constraint Solvers
	Stabilizing Constraint Solver
	Tolerancing Constraint Solver
	Machine-Precision Constraint Solver

	Configuring a Simulink Solver
	Setting Simulink Solver Tolerances
	Solver Tolerances and Stiction

	Avoiding Simulation Failures
	Configuring SimMechanics Simulation Diagnostics
	Handling Motion Singularities

	Starting Visualization and Simulation
	About Simscape and Visualization Settings
	Using the Simscape Editing Mode
	Editing Block Parameters in Restricted Mode
	Exceptions to the Restricted Mode Editing Rules

	Setting Up Visualization
	Visualization Settings for an Entire Model
	Visualization Settings for Each Machine in a Model
	Visualization Settings for Each Body in a Machine
	Visualization Settings in the SimMechanics Visualization Window

	Starting the Simulation

	How SimMechanics Software Works
	About Machine Simulation
	Model Validation
	Machine Initialization
	Force Analysis and Motion Integration
	Stiction Mode Iteration

	Troubleshooting Simulation Errors
	About Simulation Errors
	Data Validation Errors
	Ground and Body Geometry Errors
	Joint Geometry Errors
	Assembly Tolerances Violated
	Zero Massless Connector Distance
	Composite Joints: Restrictions Among Primitives

	Block Connection and Topology Errors
	Motion Inconsistency and Singularity Errors
	Zero Masses and Moments of Inertia
	Alignment of Primitives — Coincidence of Identical Bodies
	No Degrees of Freedom
	Incorrect Machine Dimensionality
	Redundant Constraints
	Violated Constraints
	Conflicting Actuators
	Sticky Joints in Conflict

	Analysis Mode Errors

	Improving Performance
	Optimizing Mechanical and Mathematical Settings
	Simplifying the Degrees of Freedom
	Eliminating Unnecessary Degrees of Freedom
	Freezing “Fast” and “Slow” Degrees of Freedom
	Removing Stiction Actuators
	Simulating in Two Dimensions

	Adjusting Constraint Tolerances
	Smoothing Motion Singularities
	Avoiding Singular Initial Configurations

	Changing the Simulink Solver and Tolerances
	Solving Stiff Systems
	Real-Time Simulation and Ignoring Motion Details with Fixed-Step

	Adjusting the Time Step in Real-Time Simulation
	Reference

	Generating Code
	About Code Generation from SimMechanics Models
	Using Code-Related Products and Features
	How SimMechanics Code Generation Differs from Simulink
	Limited Set of SimMechanics Tunable Parameters

	Using Run-Time Parameters in Generated Code
	Changing Run-Time Parameters
	Example: Changing a Block Parameter

	Limitations
	About SimMechanics and Simulink Limitations
	Continuous Sample Times Required
	Restricted Simulink Tools
	Unsupported Simulink Tool
	Simulink Tools Not Compatible with SimMechanics Blocks
	Most Tunable Parameters Not Supported by SimMechanics Software

	Restrictions on Two-Dimensional Simulation
	Restrictions with Generated Code
	Stiction-Related Algebraic Loops Disabled
	Closed-Loop Limitations
	Restrictions on Code Generated from Two-Dimensional Machines
	Restriction on S-Functions Generated from SimMechanics

	Analyzing Motion
	Dynamics of Mechanical Systems
	About Machine Dynamics
	Forward and Inverse Dynamics
	Applying the Motion Modes

	Forces, Torques, and Accelerations
	Newton’s Equations for Translational Dynamics
	Euler’s Equations for Rotational Dynamics
	Linearizing the Dynamical Equations
	Linearizing the Constraints

	Finding Forces from Motions
	About Inverse Dynamics in SimMechanics Software
	Building Kinematic Models
	Actuating Independent Degrees of Freedom

	Inverse Dynamics Mode with a Double Pendulum
	Using Body Blocks to Specify Initial Conditions
	Using Actuator Blocks to Specify the Initial States
	Specifying the Motion and Measuring the Computed Torques
	Using the Computed Torques in Forward Dynamics
	Making More Accurate Torque Measurements

	Kinematics Mode with a Four Bar Machine
	Transforming Forward into Inverse Dynamics
	Finding and Checking the Needed Torque

	Trimming Mechanical Models
	About Trimming in SimMechanics Software
	Restrictions on Trimming Mechanical Models
	Trimming in the Presence of Motion Actuation

	Unconstrained Trimming of a Spring-Loaded Double Pendulum
	Making an Initial Equilibrium Guess
	Analyzing and Initializing the State Vector
	Trimming the System to Equilibrium

	Constrained Trimming of a Four Bar Machine
	Setting Up the Four Bar for Trimming
	Analyzing and Using the State Vector
	Trimming the Four Bar
	For More Information About Trimming Closed-Loop Machines

	Linearizing Mechanical Models
	About Linearization and SimMechanics Software
	Restrictions on Linearizing Mechanical Models
	Linearizing in the Presence of Motion Actuation

	Open-Topology Linearization: Double Pendulum
	Linearizing the Model
	Deriving the Linearized State Space Model
	Modeling the Linearization Error

	Closed-Loop Linearization: Four Bar Machine
	Analyzing the Four Bar Geometry and Closed-Loop Constraint
	Making an Equilibrium Guess
	Determining the Natural Equilibrium with trim
	Linearizing the Model at the Natural Equilibrium
	For More Information About State Space and Linearization

	Motion, Control, and Real-Time Simulation
	Guide to This Chapter
	About the Stewart Platform and How It Is Modeled
	About the Case Studies
	Structure and Dependencies
	Case Study Files
	Saving Intermediate Stages of Work

	Products Needed for the Case Studies
	References

	About the Stewart Platform
	Origin and Uses of the Stewart Platform
	Characteristics of the Stewart Platform
	Counting Degrees of Freedom in the Stewart Platform
	Counting Degrees of Freedom on Bodies in Space
	Counting Degrees of Freedom as Joint Primitives
	Counting Loops. The Stewart platform legs form six loops, but o

	Representing the Independent Degrees of Freedom
	For More About Bodies, Joints, Degrees of Freedom, and Topology

	Modeling the Stewart Platform
	How the Stewart Platform Is Modeled
	Modeling the Physical Plant
	Viewing the Platform Model

	Modeling Controllers
	Generating the Reference Trajectory
	Finding the Motion Error
	The Standard PID Controller and Its Control Law
	For More About Controllers

	Initializing the Stewart Platform
	Body and Joint Geometric Configuration
	Body Mass Properties
	Motion Constants, Controller Parameters, and Initial Condition

	Identifying the Simulink and Mechanical States of the Stewart Pl
	Pure Simulink States
	Mechanical States in Forward Dynamics Mode
	Mechanical States in Trimming and Kinematics Modes
	For More About Mechanical States, Cutting Loops, and Analysis Mo

	Visualizing the Stewart Platform Motion

	Trimming and Linearizing Through Inverse Dynamics
	About Trimming and Inverse Dynamics
	What Is Trimming?
	Ways to Find an Operating Point
	Trimming in the Kinematics Mode
	Simulation Settings for Inverse Dynamics
	Specifying the Motion
	Measuring the Steady-State Forces
	Running the Model and Obtaining the Outputs

	Linearizing the Stewart Platform at an Operating Point
	Linearizing the Forward Dynamics Model
	Finding the Minimal Realization of the Linearized Model
	For More About Linearization and State Space

	Further Suggestions for Inverse Dynamics Trimming
	General Trimming Conditions: Mixed Dynamics
	Using the Operating Point to Linearize a Model

	About Controllers and Plants
	Modeling Controllers in Simulink and Plants in SimMechanics Soft
	Nature of the Control Problem
	Control Transfer Function Forms and Units
	Controller-Plant Case Study Files
	For More About Designing Controllers
	Finding Other Operating Points
	Compensating for Noise and Uncertainty
	Designing for Hardware Implementation

	Analyzing Controllers
	Implementing a Simple Controller for the Stewart Platform
	A First Look at the Stewart Platform Control Model
	Viewing the Controller
	Configuring the Dynamics
	Simulating the Stewart Platform Without Controls

	Improper and Biproper PID Controllers
	Switching to the PID Controller Subsystem
	Simulating the Controlled Motion
	Finding the Numerical Derivative of the True and Reference Traje
	Simulating at Symmetric Equilibrium

	Analyzing the PID Controller Response
	Improper PID Controller: Theory
	Filtered Derivative and Proper PID Controller: Theory
	PID Controller: Alternative Forms
	PID Controller: LTI Analysis

	Designing and Improving Controllers
	Creating Improved Controllers for the Stewart Platform
	Designing a New PID Controller
	Making a First Guess for the Controller Gain
	Making a First Guess for the Controller Force
	Modifying the Null Controller with a Constant Force
	Simulating the Platform with the Constant Force

	Trimming and Linearizing the Platform Motion
	For More About Trimming
	Setting Up the Model for Trimming
	Locating an Operating Point by Trimming
	Interpreting and Saving the Operating Point
	Linearizing the Platform Motion at the Operating Point
	Interpreting and Saving the Linearization Results
	Further Suggestions

	Improving the New PID Controller
	What You Need from Previous Sections
	Reducing the State Space with Minimal Realization
	Exploring PID Gains, Filtered Derivative, and Force Saturation
	Analyzing the Plant Response with the SISO Design Tool
	Designing a New Biproper PID Controller with the Plant Response
	Optimizing the New Biproper PID Controller with the Plant Respon
	Saving the Optimized New Biproper Control Law
	Resetting the PID Gains and Derivative Cutoff
	Checking the Symmetric Equilibrium
	Simulating the Moving Platform and Capturing the Motion Errors

	Synthesizing a Robust, Multichannel Controller
	What You Need from Previous Sections
	Viewing the H-Infinity Controller
	Defining a Desired Loop Shape Response
	Synthesize and Reduce a Controller with the Desired Loop Shape
	Simulating the Robust Controller and Capturing Its Motion Errors
	Plotting and Comparing the Results

	Generating and Simulating with Code
	About the Stewart Platform Code Generation Examples
	For More Information About Code Generation
	Learning About the Model
	Solver and Sample Time Step Sizes
	Structure of the Model
	Simulation Settings for Code Generation

	Generating an S-Function Block for the Plant
	Model Referencing the Plant
	Simulation Settings for Model Reference
	Setting Up and Running the Main Model for Model Reference

	Generating Stand-Alone Code for the Whole Model

	Simulating with Hardware in the Loop
	About Dedicated Hardware Targets for Stewart Platform Simulation
	For More Information About xPC Target Software
	Files Needed for This Study
	Adjusting Hardware for Computational Demands
	Real-Time Simulation Tradeoff
	Mitigating the Real-Time Simulation Tradeoff

	Downloading a Complete Model to the Target
	Setting Up the Target Computer and Host-Target Connection
	Examining and Running the xPC Model — Data Type Conversion
	Generating and Downloading Code from the xPC Model
	Running the xPC Stewart Platform Model on the Target
	Viewing the Target Simulation with xPC Scopes
	Adjusting the Step and Sample Times — Testing for CPU Overload

	Configuring for Realistic Hardware
	Separating Controller and Plant — Bus Communication — Discretiza
	Hardware Configuration Possibilities
	Mitigating Real-Time Trade-offs

	tables
	Stewart Platform Initialization Files
	Motion and Filtering Constants
	PID Controller Constants
	Configuration Parameters
	Machine Environment
	Complementarity of Inverse and Forward Dynamics
	Complementarity of Trimming and Linearization
	Configuration Parameters for Stewart Platform Code Generation
	Machine Environment Settings for Stewart Platform Code Generatio

